Continuous in-situ measurements of CO and CO₂ concentrations and CO₂ isotope ratios (δ^{13} C, δ^{18} O) in Nagoya city: towards CO and CO₂ simultaneous measu rements by GOSAT-2

A. Yuba¹⁾, T. Nakayama²⁾, Y. Matsumi²⁾, K. Takahashi³⁾, Y. Imasu⁴⁾

¹⁾ Asia center for air pollution research
²⁾ Nagoya University
³⁾ Kyoto University
⁴⁾ University of Tokyo

The GOSAT-2 satellite is planned to observe CO and CO_2 column concentrations simultaneously from the space.

The simultaneous measurements of CO and CO₂ column concentrations may enable to identify the contributions of the anthropogenic and biogenic processes.

In this presentation:

- Results of the ground-based in-situ measurements of CO and CO₂ concentrations in the summer and winter in the urban area of Nagoya city.
- > Estimation of the sources of CO₂ and CO from the simultaneous observation with the aids of the measurements of CO₂ stable isotope ratios (δ^{13} C, δ^{18} O).

Research purposes:

- What can be derived from the simultaneous observation of CO and CO₂.
- How in-situ observations can support the analyses of the satellite data.

Observation site and periods

Observation site

Nagoya urban area

: Forth largest city in Japan with a population of 2.3 million

Observation periods

(1) August 16-24, 2011, (2) January 6-31, 2012

Measurement species and instruments

Measurement species	Instruments
CO ₂	Li-Cor 820, NDIR
CO_2 Isotope $\delta^{13}C$, $\delta^{18}O$	Aerodyne, Laser absorption spectrometer
H ₂ O Isotope δD, δ ¹⁸ O	LGR, water vapor isotope ratio analyzer
СО	Thermo, NDIR, CO analyzer
NO, NO ₂	Horiba, NO _x analyzer

Temporal variations of CO₂ and CO concentration in the summer and winter

The contribution of anthropogenic combustion, and biogenic activity.

* CO₂ and CO concentrations became high in the nighttime.

those of CO concentration

In the winter, the air pollution was stayed inside the inversion layer.

Relationship between CO₂ and CO concentration

Winter

 CO/CO_2 is around 9.

No difference between night and day.

Summer

 CO/CO_2 is ranged from 2 to 7.

 CO/CO_2 in the nighttime are lower than those in the daytime.

$CO/\Delta CO_2$ in summer

 $CO/\Delta CO_2$ shows the contribution of CO_2 emission source.

 $CO/\Delta CO_2$ ratio :Power plant, biogenic ~ 0 Car exhaust ~ 5 Residential energy use $10 \sim 15$

Temporal variation of $CO/\Delta CO_2$

Temporal variations of CO₂ isotopic ratios in the summer and winter

Keeling plot analysis

Identification of CO₂ emission sources from the isotope ratios

Pataki et al. (2006)

Keeling plot analysis: δ^{13} C and CO/ Δ CO₂

Keeling plot analysis: δ^{18} O and CO/ Δ CO₂

According to Keeling plot analysis of δ^{18} O, CO₂ concentrations in the winter were partly influenced by CO₂ emission from the biogenic respiration.

conclusion

- We report that the ground based measurement of CO, CO₂ concentration and CO₂ isotopic ratios (δ^{13} C and δ^{18} O) at Nagoya, in 2011 winter and 2012 summer.
- The variation of CO and CO₂ concentration was different in the summer and winter.
 - CO and CO₂ concentrations were varied synchronously.
 - CO₂ concentration in the summer shows the clear diurnal variation.
- The contributions of emission from combustion and biogenic process were shown from the analysis of CO/ Δ CO₂ and Keeling plot analysis.

This research was partly conducted under the framework of the GOSAT RA, and partly supported by GRENE-ei program.

Thank you for attention.

CO2 and CO emission and absorption in the4%rb2%n 7%ea

- CO₂ concentration in urban area is influenced by...
 - the emission or absorption based on the biogenic respiration and photosynthesis.
 - the emission from fossil fuel combustion.
- CO concentration in urban area is changed with the emission from vehicles and biomass burning. (mainly from vehicles).

