A New BRDF Model to Reduce Biases in Orbiting Carbon Observatory-2 (OCO-2) Retrievals

Vijay Natraj (Jet Propulsion Laboratory, California Institute of Technology)

Co-Authors
James McDuffie (Jet Propulsion Laboratory)
Brendan Fisher (Jet Propulsion Laboratory)
Chris O’Dell (Colorado State University)
David Crisp (Jet Propulsion Laboratory)
Annmarie Eldering (Jet Propulsion Laboratory)
Dejian Fu (Jet Propulsion Laboratory)
Debra Wunch (University of Toronto)
Paul Wennberg (Caltech)
Lukas Mandrake (Jet Propulsion Laboratory)

12th International Workshop on Greenhouse Gas Measurements from Space
June 7, 2016
OCO-2 Science Viewing Modes

Nadir Observations:
+ Small footprint (< 3 km²)
− Low Signal/Noise over dark surfaces (ocean, ice)

Glint Observations:
+ Improves Signal/Noise over oceans
− More cloud interference

Target Observations:
• Validation over ground based FTS sites, field campaigns, other targets

Local Nadir

Glint Spot

Ground Track

Park Falls, WI

447-m WLEF Tower

O₂ A Band
Weak CO₂
Strong CO₂
Retrieved albedo correlated with scattering angle => BRDF effects?
BRDF Formulation

\[BRDF(\lambda) = \left[w + s(\lambda - \lambda_0) \right] F(p_1, p_2) \]

- \(w \): overall BRDF amplitude
- \(s \): slope of BRDF amplitude
- \(\lambda \): wavelength
- \(\lambda_0 \): central wavelength (where parameters are retrieved)
- \(F \): function describing BRDF shape
- \(F \) has slightly different forms for bare soil and vegetated surfaces
- BRDF kernel reduces to Lambertian kernel for certain choice of \(F \)
- \(p_1 \) and/or \(p_2 \) can be retrieved or held fixed
Target Mode Tests
Retrieved XCO2

Lambertian

Soil BRDF, p_1, p_2 retrieved

Veg BRDF, p_1, p_2 retrieved

Soil BRDF, p_1, p_2 not retrieved

Veg BRDF, p_1, p_2 not retrieved

X_{CO2} closer to TCCON value for BRDF models, especially when BRDF shape is fixed
Retrieved AOD

AOD closer to AERONET value, and uncorrelated with scattering angle, for BRDF models
Retrieved Albedo

- Lambertian
- Soil BRDF, p_1, p_2 retrieved
- Veg BRDF, p_1, p_2 retrieved
- Soil BRDF, p_1, p_2 not retrieved
- Veg BRDF, p_1, p_2 not retrieved

Albedo uncorrelated with scattering angle for BRDF models; BRDF models also produce more filtered, converged soundings
Glint Mode Tests
XCO2 Difference (Land Glint Only)
BRDF Test TCCON1 Set

- Black = All Land Data
- Green = Nadir Land
- Blue = Glint Land

Mean diff = 0.042
Diff std. dev. = 0.815
Mean diff(nadir land) = -0.066
Diff std. dev. = 0.741
Mean diff(glint land) = 0.191
Diff std. dev. = 0.887

XCO2 Difference Histogram

26 Jan 2016
Psurf Difference Histogram

BRDF Test TCCON1 Set Lambertian only

Mean diff(land) = -0.153
Diff std. dev. = 1.896
Mean diff(nadir land) = 0.326
Diff std. dev. = 1.759
Mean diff(glint land) = -0.818
Diff std. dev. = 1.879

26 Jan 2016
Unfiltered Small Area Land Tests
Convergence Statistics

• Number of soundings
 – B7 Baseline: 41873
 – Soil: 42551
 – Vegetation: 42550

• Converged
 – B7 Baseline: 36035 (86.06%)
 – Soil: 42539 (99.97%)
 – Vegetation: 42541 (99.98%)

• Good Quality
 – B7 Baseline: 12958 (30.95%)
 – Soil: 15239 (35.81%)
 – Vegetation: 15210 (35.75%)
XCO2
XCO2 Difference
XCO2 Difference Histogram

![BRDF Test UFSA Set](image-url)

- Green = Nadir Land
- Blue = Glint Land

BRDF Test UFSA Set

- Black = All Land Data
- Green = Nadir Land
- Blue = Glint Land

Mean diff = 0.038
Diff std. dev. = 0.854
Mean diff (nadir land) = 0.072
Diff std. dev. = 0.719
Mean diff (glint land) = 0.149
Diff std. dev. = 0.961

Mean diff = 0.034
Diff std. dev. = 0.854
Mean diff (nadir land) = 0.071
Diff std. dev. = 0.723
Mean diff (glint land) = 0.142
Diff std. dev. = 0.958
Next Steps

• Re-baseline with new spectroscopic models

• How do we compare Lambertian and BRDF results?

• Implement BRDF model in operational code