

A New BRDF Model to Reduce Biases in Orbiting Carbon Observatory-2 (OCO-2) Retrievals

Vijay Natraj (Jet Propulsion Laboratory, California Institute of Technology)

Co-Authors

James McDuffie (Jet Propulsion Laboratory) Brendan Fisher (Jet Propulsion Laboratory) Chris O'Dell (Colorado State University) David Crisp (Jet Propulsion Laboratory) Annmarie Eldering (Jet Propulsion Laboratory) Dejian Fu (Jet Propulsion Laboratory) Debra Wunch (University of Toronto) Paul Wennberg (Caltech) Lukas Mandrake (Jet Propulsion Laboratory)

12th International Workshop on Greenhouse Gas Measurements from Space June 7, 2016

OCO-2 Science Viewing Modes

Nadir Observations:

- + Small footprint (< 3 km²)
- Low Signal/Noise over dark surfaces (ocean, ice)

Glint Observations:

- + Improves Signal/Noise over oceans
- More cloud interference

Target Observations:

 Validation over ground based FTS sites, field campaigns, other targets

Retrieved Albedo Correlated With Scattering Angle

Retrieved albedo correlated with scattering angle => BRDF effects?

$$BRDF(\lambda) = [w + s(\lambda - \lambda_0)]F(p_1, p_2)$$

- *w*: overall BRDF amplitude
- *s*: slope of BRDF amplitude
- λ : wavelength
- λ_0 : central wavelength (where parameters are retrieved)
- *F*: function describing BRDF shape
- *F* has slightly different forms for bare soil and vegetated surfaces
- BRDF kernel reduces to Lambertian kernel for certain choice of F
- p_1 and/or p_2 can be retrieved or held fixed

Target Mode Tests

Retrieved XCO2

X_{CO2} closer to TCCON value for BRDF models, especially when BRDF shape is fixed

Retrieved AOD

AOD closer to AERONET value, and uncorrelated with scattering angle, for BRDF models

Retrieved Albedo

Albedo uncorrelated with scattering angle for BRDF models; BRDF models also produce more filtered, converged soundings

Glint Mode Tests

Unfiltered Small Area Land Tests

- Number of soundings
 - **B7 Baseline: 41873**
 - Soil: 42551
 - Vegetation: 42550
- Converged
 - B7 Baseline: 36035 (86.06%)
 - Soil: 42539 (99.97%)
 - Vegetation: 42541 (99.98%)
- Good Quality
 - B7 Baseline: 12958 (30.95%)
 - Soil: 15239 (35.81%)
 - Vegetation: 15210 (35.75%)

XCO2 Difference

XCO2 Difference Histogram

Re-baseline with new spectroscopic models

• How do we compare Lambertian and BRDF results?

Implement BRDF model in operational code