

AN INTRODUCTION TO MICROCARB, FIRST EUROPEAN PROGRAM FOR CO2 MONITORING.

International Working Group on Green house Gazes Monitoring from Space IWGGMS-12

Francois BUISSON – CNES

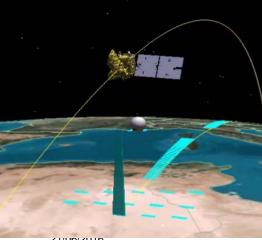
With Didier PRADINES, Veronique PASCAL, Denis JOUGLET

Kyoto Japan – June 7-9, 2016

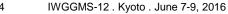
MISSION GOALS

- Quantify the CO2 fluxes at the earth surface
- Improve our understanding of the mechanisms which control both sinks and sources (identification of the key parameters of these exchanges, of the processes controlling their seasonal variability)
 - Improvement of the models describing the carbon cycle
 - Assessment of the reaction of the exchange mechanisms to the climate change (See IPCC report "Climate change will affect carbon cycle processes in a way that will exacerbate the increase of CO2 in the atmosphere ")
- Ensure continuity of data and bring data in complement to Gosat-2 OCO-3 and Tansat.
- Prepare a possible family of instruments
- Bring a European contribution to the international efforts to improve the understanding of the carbon cycle.

MISSION DESCRIPTION

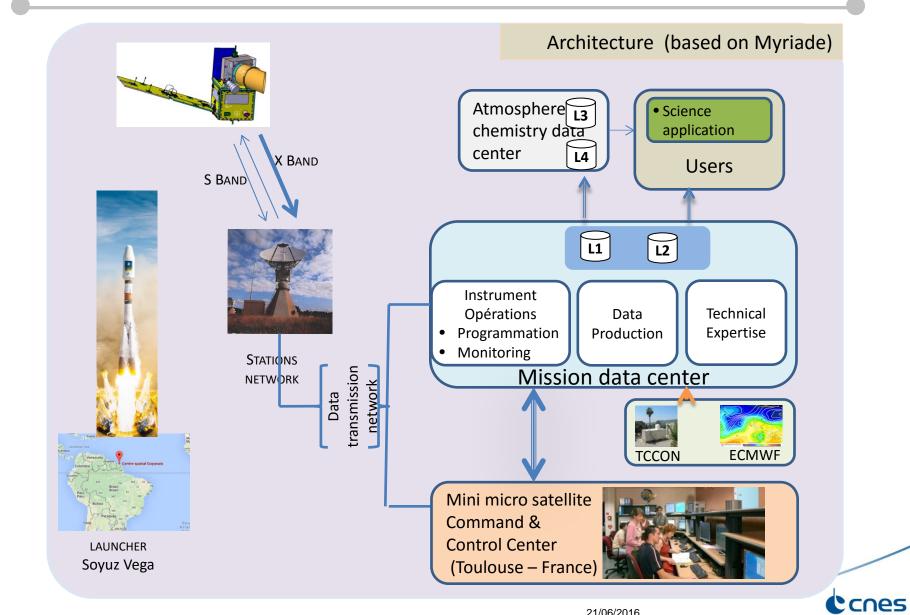

- Measurement of GHG atmospheric concentration (total column integrated content (CO2 + CH4) at global scale)
- Sampling mission (limited swath, sample size ~40 km²). Priority to the quality of the data.
- High precision (< 1 ppm) and low systematic error (bias < 0,1 ppm)
- Peak sensitivity (weighting function) near the surface
- Passive sounding instrument
- Compact and affordable instrument on board a microsatellite on LEO
- Launch date: 2020
- Life time: > 5 years
- Use the lessons learnt from projects in operation
- Orbit
 - Sun-synchronous 649 km 10h30 LTDN
 - Period: 25 days (sub cycle 7 days)

OBSERVATION MODES

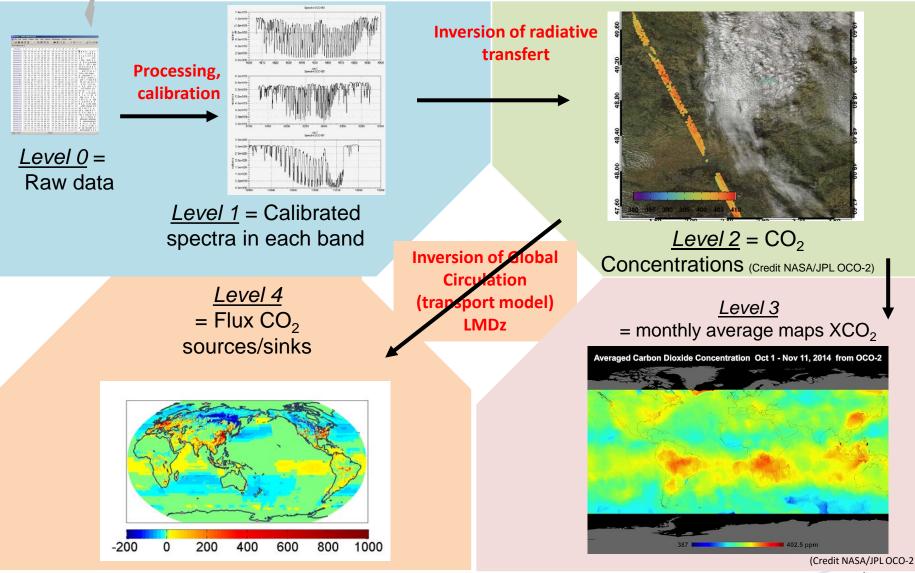

Nadir	Glint	Target
Over lands	Over oceans	For calibration (TCCON)

Scan capacity

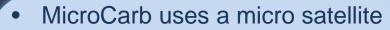
- Mechanism integrated in the instrument (rotating mirror. One axis)
- Across the track: ± 200 km
- Permits to acquire non correlated data
- Sampling distance: 100 km ALT and ACT



COPS


21/00/2010

SYSTEM ARCHITECTURE

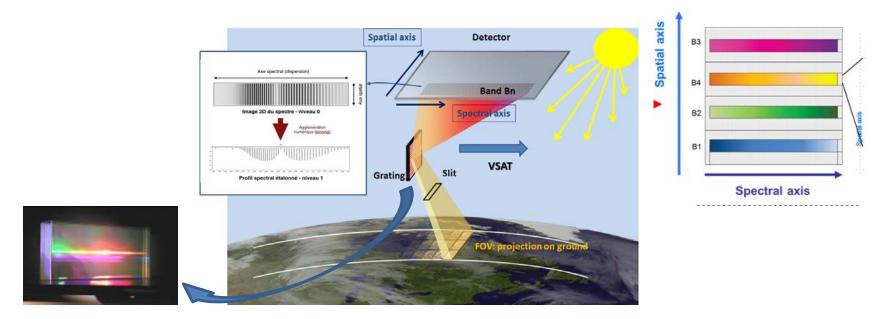

PRODUCTS AND DATA PROCESSING

21/06/2016

cnes

SATELLITE DESCRIPTION

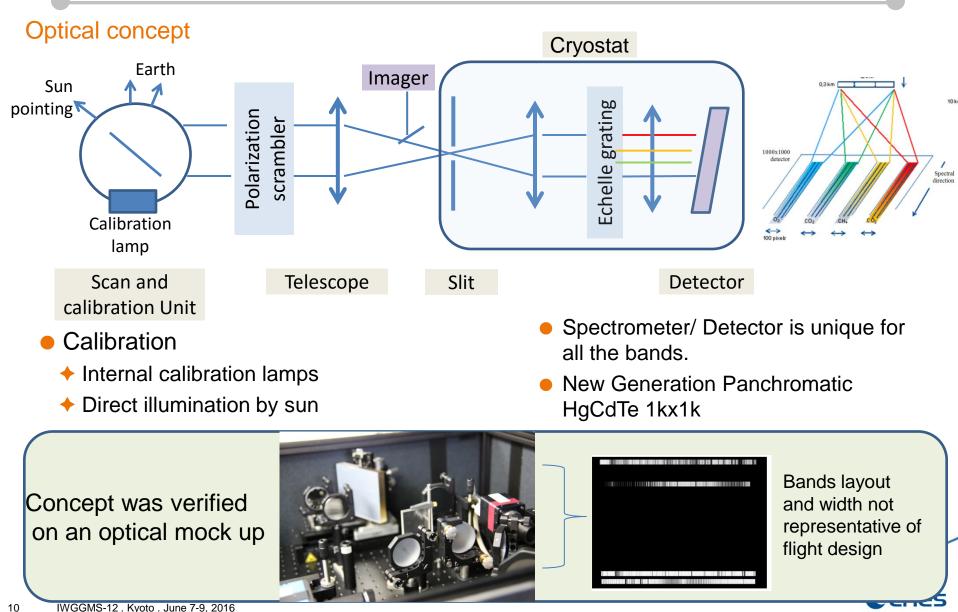
- Enhanced Myriade family
- Flight proven: already used for 19 satellites
- Mass 170 kg
- High rate telemetry: 156 Mbits/s
- On board Data storage: 800 Gbits
- Hydrazine propulsion : 55 m/s
- Steerable solar generator



INSTRUMENT SPECIFICATIONS

Туре	Echelle grating spectrometer	
Spectral bands	B1 (O_2): 767 nm BW : 10 nm B2 (CO_2): 1601 nm BW : 20 nm B3 (CO_2): 2046 nm BW: 26 nm B4 (CH_4): 1674 nm BW: 22 nm Still TBC. Fine tuning on going	
Spectral resolution	R > 25 000	
Field of views	3 FOV size 4,5 km (ACT) x 9 km (ALT) simultaneously acquired	
Integrated Imager	Cloud detection. 0,625 μm Ground sampling: #100 m	
Spectral sampling	> 2,8	
Mass	< 60 kg	
Power	< 55 W	
Data rate	All data are downloaded. No processing on board => data rate 400 Gbits/day	

INSTRUMENT DESCRIPTION

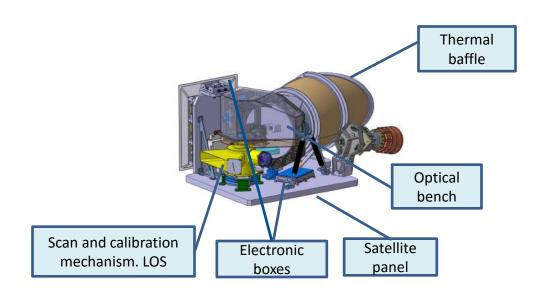


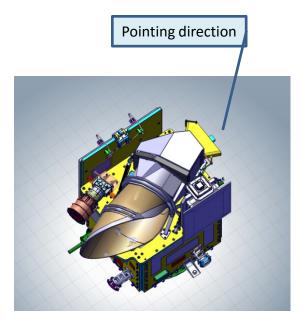
Instrument operating principle

- Echelle grating performs the diffraction
- In the detector, for each band:
 - Along X axis: spectrum
 - Along Y axis: projection of the slit on the ground
 - Each band uses ~100 pixels in the spatial direction

COes

INSTRUMENT DESCRIPTION

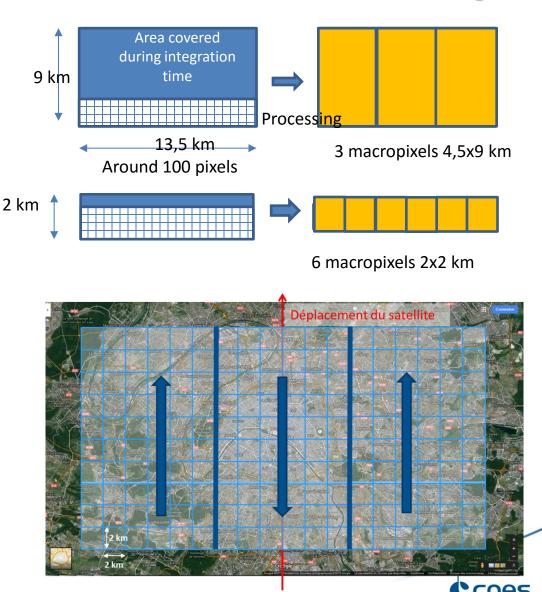

INSTRUMENT DESCRIPTION


Thermal concept

- Cooling is made passively: cryogenic radiator protected by earth and sun baffle
- Detector cooled down to 150K, Spectrometer cooled down to 225 K

Mechanical

• Use of Si C for high stability.


Instrument lay out on Myriade platform

EXPLORATORY MODES

Improved resolution or « City « mode

- Goal:
 - experiment capacity to characterize local emissions
 - Support for vicarious validation
 - locally improvement of the spatial resolution
- Obtained by slowing down the satellite scrolling + scan + binning tuning
- No data acquisition before / after (satellite maneuver)
- Typical footprint: 2x2 km
- Typical area surface: 40x25 km²

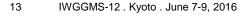
STATUS - ORGANIZATION

Program decided

- Decision announced by French Government Dec 8th, 2015 (COP-21)
- Phase B is in progress

Organization. Actors)

- MicroCarb has been defined by CNES in collaboration with French research laboratories from CNRS and CEA
 - Laboratoire des Sciences du Climat et de l'Environnement (F.M.. Breon PI)
 - Laboratoire de Météorologie Dynamique
 - Institut Pierre Simon Laplace
 - + Laboratoire Atmosphères, Milieux, Observations Spatiales, and others
- Funding is provided by French program "Investment for Future".
- CNES selected Airbus Defence and Space for the design and development of the instrument => design on going
- CNES proposes to other European agencies to join the project and share the efforts



Laboratoire des sciences du climat & de l'environnement

Institu

CRZ

