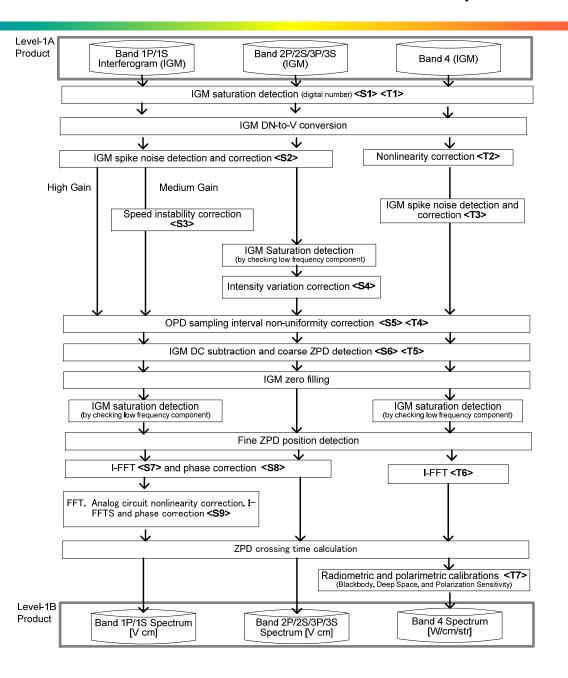

9th IWGGMS:

Level1 Algorithm for TANSO-FTS on GOSAT: Calibration and Correction of four years data A. Kuze, H. Suto, K. Shiomi, M. Nakajima

May 30, 2013 Yokohama, Japan

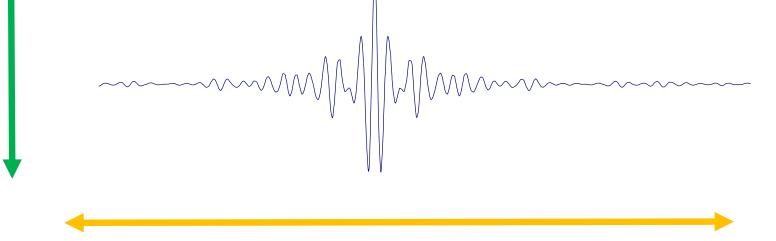
Level 1 processing - Updates history and corrections


Level 1B processing:

Too many corrections confuse users

The first version SWIR Optimization of phase correction	
WIR Optimization of phase correction	
$\frac{1}{2}$	
SWIR Low frequency and optical vignetting correction	
Quality flag correction	
IR Polarization and radiometric correction	
TIR Detector non-linearity correction	
D ₂ A Speed instability correction (Gain M)	
O ₂ AADC non-linearity correction	
TR Deep space view obscuration correction	
O ₂ A non-linearity correction	
Ion uniformity correction of laser sampling intervals	
Optimize TIR correction parameters	
ine non-linearity correction	
)p	

Level 1 processing flow Becomes more and more complicated


May 2013, IWGGMS

Corrections (no corrections after I-FFT) -interferogram is everything-

Y-AXIS

Intensity variation (Low frequency) component correction Detector (B4) and amplifier (B1) Non-linearity Correction ADC non-linearity (not corrected, V130 issue)

X-AXIS (Re-sampling)

FTS mechanism scan speed instability correction (2 sinusoidal sources)Sampling interval non-uniformity correction (not corrected V150 issue)Doppler shift due to IMC (forward to backward viewing) (not corrected yet)Interferogram truncation (no ZPD shift effect)May 2013, IWGGMS

What was done in V160.160 from May 16 To do in V170.170

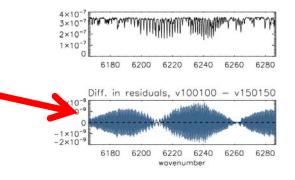
V150.151 SINUC (Sampling interval non-uniformity correction) applied

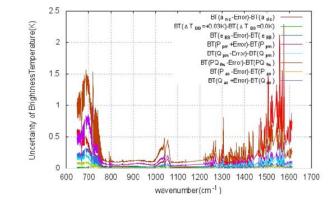
Improper edge process of interferogram

V160.160

(1) no SINUC

(2) Spike noise (pointing instability) quality flag criteria


The criteria using IGM differential was too strict.


(3) More detailed TIR radiometric correction Polarization, Blackbody emissivity BG radiation.

V170.170

(1) Proper SINUC (Proper edge process

(2) Band 1 analogue circuit non-linearity correction (amplifier and its power supply, consistency between gains H and M) May 2013, IWGGMS

To do next

-more effective operation and user friendly data

How to improve consistency and yield rate Region-by-region customized plan

	Characteristics	Customized Plan
Validation site, Nevada	High albedo, low AOD	Permanent target
Lamont	TCCON site	Permanent target
Amazon	Fractional clouds	Scramble
South America (east coast)	Non-flat	(avoid non-flat) Target the coast
Central Africa	Thick AOD	Multi angle
Sahara	High albedo, thick	Multi angle
Southeast Asia	Island, cloudy	(avoid dark ocean)
Ocean	Glint (Lambertian or not)	Different Patterns (IMC or track glint point)
	Dark target for aerosol retrieval	Multi angle
Australia	Little CO ₂ variation	Gain H and M consistency
Mega City, Volcano	Point emission source	Vent + reference

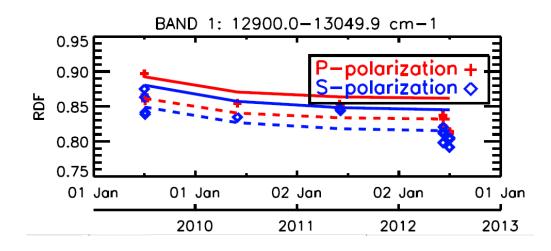
Question: How to categorize background and high density targets

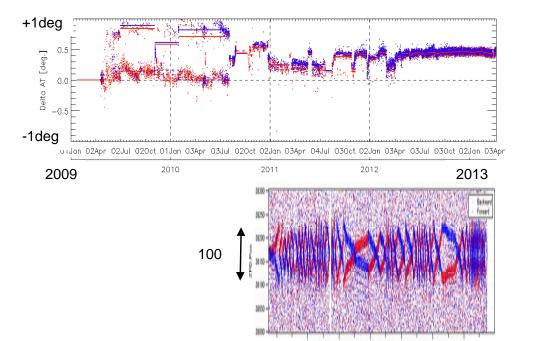
Target Classification

-in case of too many target modes

→(3-day) limited calibration and validation site
(3-day) sun glint, RA target observations
(3-day) sun glint and limited calibration and validation site
(3-day) sun glint, RA target observations

Up to 1,000 target points per day


Target Classification to identify high bias or background CAL (Nevada) & VAL (TCCON, Contrail) site Mega city (downtown and reference) Power plant (plume and reference) Volcano (vent and reference)



May 2013, IWGGMS

GOSAT data becomes stable -degradation, pointing offset, ZPD shift

2013

2011

Radiance degradation factor diffuser calibration + vicarious calibration

AT pointing offset Grid observation Target Mode

ZPD shift < +/- 50 fringes

Advanced L1 product with best estimate calibration -5years package, scrap-and-build

- (1) Raw spectra (V/cm-1) + best estimate radiance after degradation correction <radiometric>
- (2) Raw geometry data + best estimate after pointing error correction <Geometric>
- (3) Geometry (Scattering phase angle), surface BRDF and aerosol
- (4) Mueller matrix < Polarimetric>
- (5) Quality flag (Real anomaly only: pointing)
- (6) Target point classification
- (7) Truncated IGM and exactly uniform MOPD for 5 years
- (8) Finite-angle effect correction (TIR only)
- (9) Correction Wavelength shift due to laser gradual misalignment (probably no need) < Spectrometric>

Conclusion

Suggestions and requests from L1 and L4 users are welcome

L1 format and contents

Operations

Target classification

please mail to kuze.akihiko@jaxa.jp

And a second secon