

CarbonSat, ESA's Earth Explorer-8: Candidate Mission Overview

- Y. Meijer, P. Ingmann, A. Loescher, B. Sierk, P. Bensi ESA
- H. Bovensmann, M. Buchwitz IUP
- and the CarbonSat MAG &
- Science Study Teams

CarbonSat: Mission Advisory Group (MAG)

Mission Advisory Group:

- Heinrich Bovensmann, IUP, University of Bremen, Bremen, D (Chair)
- Hartmut Bösch, University of Leicester, UK
- Dominik Brunner, EMPA, Dübendorf, CH
- Philippe Ciais, LSCE, Gif-sur-Yvette, F
- David Crisp, JPL, Pasadena, USA
- Han Dolman, Free University, Amsterdam , NL
- Gary Hayman, Centre for Ecology and Hydrology, Wallingford, UK
- Sander Houweling, SRON, Utrecht, NL
- Günter Lichtenberg, DLR-IMF, Oberpfaffenhofen, D

Two scientific study teams:

- Mission Requirement Consolidation Study: IUP University of Bremen (lead), University of Leicester, SRON
- Inverse Modelling Study: NOVELTIS (management lead), LSCE (science lead), SRON, IUP-UB, EMPA, MPI-BGC

Material from both study teams will be used in this presentation

Candidate Earth Explorer 8: CarbonSat Mission Objectives

Scientific and societally-relevant objectives:

- quantify CO₂ & CH₄ sources and sinks on global, regional & local scales
- identify CO₂ uptake mechanisms of terrestrial biosphere
- identify response of CO₂ & CH₄ sources and sinks to climate change
- contribute to independently estimate local greenhouse gas emissions

Flux inversion using models in conjunction with measurements of atmospheric CO_2 and CH_4 fields will allow scientists to <u>disentangle</u> <u>anthropogenic and natural</u> sources and sinks of CH_4 and CO_2 from local to global scale from space for the first time.

Recent **WMO** press release: http://www.wmo.int/pages/ mediacentre/press_releases/ pr_965_en.html

CarbonSat Science Goals

CarbonSat - Spatial resolution & coverage CarbonSat will address: 000 SCIAMACHY (arbonSat Laser GOSAT Better top-down constrain on regional 2 x 2 km² 1 x 1.5 km² 1 x 100 km² 10 km 30 x 60 km² Berlin and country scale flux inversions (mainly natural fluxes) Germany New: local scale top-down constraint ۲ 500 km 10 km Now 240 km **New: MegaCity** scale top-down constraints Paris city plume Universität Bremen Distance [km] Powerplant: 24M TCO2/year Figure: LSCE -10 0 -5 ED (AR kT CO₂ for 2009 Distance [km] ,2009 CO2/CH4

ESA UNCLASSIFIED – For Official Use

^{0.9850 0.9925 1.0000 1.0075 1.0150}

CarbonSat Science Objectives

Science objectives of CarbonSat after flux inversion:

Objective	Temporal	Domain	Spatial	Required ac	CUracy (IBC)
and scale	scale (TBC)	scale (TBC)	scale (lat x lon) (TBC)	Goal	Threshold
CO ₂ regional	Monthly Annual	Global Global	500x500 km ² 500x500 km ²	0.2 gC/m²/day (1.5 MtC) [#] 0.05 gC/m²/day (4.6 MtC) [#]	0.5 gC/m ² /day (3.8 MtC) [#] 0.1 gC/m ² /day (9.1 MtC) [#]
CO ₂ city [†]	Overpass time, 1–4 per month	240x240km ²	50x50 km ²	2 MtCO ₂ /yr ^{\$}	4 MtCO ₂ /yr ^{\$}
CO ₂ point sources&	Overpass time, 1–4 per month	80x80km ²	2x2 km ²	1 MtCO ₂ /yr ^{\$}	2 MtCO ₂ /yr ^{\$}
CH₄ regional	Monthly	Global	500x500 km ²	5 mgCH ₄ /m ² /day (38 ktCH ₄) [#]	15 mgCH ₄ /m ² /day (114 ktCH ₄) [#]
CH ₄ point sources	Overpass time, 1–4 overpasses per month	80x80km ²	2x2 km ²	4 ktCH ₄ /yr ^{\$}	8 ktCH ₄ /yr ^{\$}

[#] Fluxes in parenthesis refer to the spatial and temporal scale of the requirement.
[†] For targets larger than 20 MtCO₂/yr (corresponding to mega-city scale emissions (e.g., Paris, Los Angeles)), the required accuracy is 10% (G)/20% (T).

^{\$} Instantaneous fluxes expressed on an annual time scale, excl. wind speed error

[&] For targets larger than 10 MtCO₂/yr, the required accuracy is 10% (G)/20% (T).

CarbonSat Mission Requirements

Single error of column-averaged mixing ratios

- XCO₂: 1- 3 ppm precision, <0.5 ppm bias
- XCH₄: 6 12 ppb precision, <5 ppb bias

High spatial resolution and good coverage:

- 4 km² ground pixel,
- 180–240 km swath width

Orbit: LEO Sun-synchronous, around 11:30 hr LT

Modes:

- Nadir imaging (main); for land & ocean
- Sun-glint; for optimised ocean coverage

Clear-sky fraction

	CarbonSat Number of Clear-Sky Observations					
	Instrument Spatial resolution [km ²]		Total number observations per day	Clear-sky frequency	Total number clear-sky observations per day	
5	CarbonSat	4	13.500.000	23%	3.100.000	
3	000	3	1,680,000	27%	453,600	
2	GOSAT	85	10,000	13%	1,300	
	SCIAMACHY	1800	70,000	5%	3,500	

European Space Agency

ESA UNCLASSIFIED – For Official Use

CarbonSat Requirement Evolution

Different approach:

- Trade spectral resolution for SNR and observation band width
 - Thick clouds \rightarrow use small spectral bands in continuum at higher SSD
 - \rightarrow use strong H₂O vapour band around 2 µm
 - Clouds \rightarrow use available spatially oversampled data, i.e. intrinsic imager
- Fluorescence

Thin cirrus

- \rightarrow use more Fraunhofer lines at higher SNR
 - (for corrections, but will also be a secondary product)

GOSAT measurements around Orleans (FR) from 1.93-1.94 µm. Thin cirrus immediately raise the signal from the noise level.

European Space Agency

ESA UNCLASSIFIED – For Official Use

CarbonSat Observational Requirements

Spectral requirements:

Band	NIR	SWIR-1	SWIR-2
Range [nm]	747 – 773	1590 – 1675	1925 – 2095
Resolution	0.1 nm	0.3 nm	0.55 nm
Sp. sampling	3 – 6	3 - 6	3 – 6

SNR requirements:

Band	L _{ref}	SNR _{ref}
NIR	4.2 x 10 ¹²	150
SWIR-1	1.5 x 10 ¹²	160
SWIR-2	3.8 x 10 ¹¹	130

Full performance required in signal dynamic range where

- SZA: 0 75 degrees
- Albedos:
 - 0.10 0.5 NIR
 - o 0.05 0.4 SWIR-1
 - $\circ \quad 0.05-0.4 \ \text{SWIR-2}$
- <2% polarization sensitivity
- 2-3% absolute and relative radiometric accuracy

CarbonSat Observational Requirements

Higher spatial sampling (HSS) shall be provided which allows sub-pixel cloud detection:

• Spatially un-binned

ESA UNCLASSIFIED – For Official Use

Spectrally binned

Intrinsic imager!

HSS band I D	Wavelengt h (nm)	Widt h (nm)	Information objective
NIR			
HSS-01	750.3	0.3	Surface albedo / continuum level
HSS-02	751.3	0.3	Fluorescence from solar Fraunhofer line
HSS-03	752.0	0.3	Surface albedo / continuum level
HSS-04	757.0	4.0	Surface albedo / continuum level /clouds
HSS-05	762.0	4.0	Cirrus detection from saturated O ₂ absorption line
HSS-06	766.0	2.0	Surface pressure from moderate O ₂ absorption line with weak temperature dependence
HSS-07	771.0	4.0	Surface albedo / continuum level /clouds
SWIR-1			
HSS-08	1595.4	3.9	Surface albedo / continuum level /clouds
HSS-09	1602.5	3.0	CO ₂ absorption line
HSS-10	1618.1	3.9	Surface albedo / continuum level /clouds
HSS-11	1662.0	3.9	Surface albedo / continuum level /clouds
HSS-12	1666.5	3.0	CH ₄ absorption line
HSS 13	1671.5	3.9	Surface albedo / continuum level /clouds
SWIR-2	SWIR-2		
HSS-14	1935.0	11.0	Cirrus detection from saturated H_2O absorption line
HSS-15	1992.0	2.2	Surface albedo / continuum level /clouds
HSS-16	2010.0	11.0	CO ₂ absorption line (strong)
HSS-17	2038.0	5.5	Surface albedo / continuum level /clouds
HSS-18	2070.0	11.0	CO ₂ absorption line (moderate)
			Faue, 7

CarbonSat Concept Overview

- Pushbroom (across track), along track via spacecraft motion
- 3 imaging grating spectrometers with good spatial and spectral imaging capabilities
- 2-D detectors cooled
- On-board calibration sources (diffusers, lamp, LED)

Supporting Scientific Studies

- Study on L1L2 requirements consolidation,
 - Objective to provide the link between L1 and L2
 - Status: started early 2012, led by IUP Bremen and ends mid 2013
 - Provided justification for significant L1 requirement changes while maintaining the mission objectives at L2+
- Study on data assimilation/inverse modelling; LOGOFLUX
 - Objective: to provide the link between L2 and L4 (fluxes)
 - Status: started early 2012, led by NOVELTIS and ends mid 2013
 - Simulated data have been generated providing random and systematic errors based on aerosol, SZA, MODIS clouds, ECMWF p/T/wind, etc
 - Flux inversion tools have been developed and tested to quantify the impact of error sources such as measurement noise, insufficient knowledge on the atmospheric transport, spatial and temporal variations of the fluxes for evaluation of CarbonSat's expected performance at different scales

Full swath XCO₂ random and systematic error CSC CSC

XCO₂(FP) systematic error

XCO₂(FP) random error

Preliminary !

European Space Agency

0.90

ESA UNCLASSIFIED – For Official Use CarbonSat Mission, Yasjka Meijer et al, at IWGGMS-9, Yokohama (JP)

Full swath XCH₄ random and systematic error CSC CSC

XCH₄(FP) systematic error

$XCH_4(FP)$ random error

Preliminary !

European Space Agency

3.80

ESA UNCLASSIFIED – For Official Use CarbonSat Mission, Yasjka Meijer et al, at IWGGMS-9, Yokohama (JP)

Simulated CarbonSat data by IUP for 2008: Number of Observations/month per 5° x 5°

Simulated CO₂ plume from Paris emissions

- 1. Atmospheric transport modelling at high resolution
- 2. Uses a priori hourly emission, including traffic, household & industry
- Used to assess CarbonSat capabilities using various flux inversion methods

CarbonSat Campaigns: C-MAPExp (CO₂ & CH₄ Mapping Experiment)

Objectives of C-MAPExp (Aug. 2012)

To identify & quantify strong local urbanscale sources of greenhouse gases

Target area: North Rhine-Westphalia, Germany

Main Sources in the region:

- a. Landfills
- b. Coal Mining
- c. Oil and Gas Refineries
- d. Power Plants

Airborne Simulator: Methane Airborne Mapper–MAMAP from University Bremen

Airborne Validation: Measuring four-dimensional (time and space) in-situ concentrations $CO_2 \& CH_4$, Wind, Temp, Aerosol

C-MAPExp CO₂: Lignite-fired Power Plant

MAMAP XCO2_(CH4) measurements over the lignite fired power plant Eschweiler (yearly emission of 19 MtCO2/Yr, E-PRTR 2009)

European Space Agency

CarbonSat Summary

- CarbonSat aims to provide: XCO₂ and XCH₄ data (& VCF) with high accuracy, high spatial resolution (4 km2) AND good global coverage (240 km continuous swath)
- Allowing separation of natural and anthropogenic fluxes and "imaging" of regions with localised CO₂ and CH₄ emissions As a result, to better quantify greenhouse gas sources and sinks down to the regional and local scale.
- Two parallel industrial (system studies) on-going
- Supporting scientific studies and campaigns leading to requirement consolidation and concept simplifications
- Other candidate mission is Fluorescence Explorer (FLEX)
- Results from both Earth Explorer-8 candidate missions to be presented at a User Consultation Meeting in 2015 (TBC by ESA)
- Envisaged launch of selected Earth Explorer 8 is around 2020

ESA Earth Explorer 8 Candidate Mission

> CarbonSat Global CO₂ & CH₄ from space

Simulated typical spectrum: vegetation albedo and SZA of 50 degrees

Page. 21