Lessons and Learned from GOSAT towards GOSAT-2 GOSAT-2 Towards better understanding of carbon cy H. SUTO A. Kuze, K. Shiomi and M. Nakajima (C) JAXEAMOE 2013/05/29 Yokohama, JAPAN

FACTS

GOSAT can:

- 1. Distribute X_{CO2} with errors less than 1% (3-4ppm), almost 0.5%(2ppm)
- 2. Leading space-based CO₂ observation

			Number of	X	02	Xc	X _{CH4}	
	Group	Version	Averaged TCCON site	Bias [ppm]	STD [ppm]	Bias [ppb]	STD [ppb]	
	NIES-FP	1.x	11	-8.85	4.75	-20.4	18.9	
	NIES-FP	2.x	11	-1.48	2.1	-6	12.5	
	NIES-PPDF-DOAS	-	11	0.07	2.48	-	-	
	ACOS	B2.9	10	0.13	2.0	-	-	
	RemoTeC	2.1	12	0.63	2.05	4.0	14	
	Univ. of Leicester	3.0 for X _{CO2} 3.2 for X _{CH4}	7	-0.2	2.3	3.4	17	
2 研究 ace bps	2013/05/29		NIES-FP NIES-PPDF-DOA ACOS RemoTeC Univ. Leicester	: Y.Yoshic S: S. Oshcl : D. Crisp : A. Butz : H. Boes	la, et al, 20 nepkov, et , et al, 201 c, et al, 201 sch, 2012)13 al,2012, 2 .2 .1, G. Sand	2013 drine et a	

Retrieved scan rate for NIES, ACOS and RemoTeC

G	TOTAL				Retrieve	ed Scans			TeC V2.1 wo/ QF 214460 <0.0555> (6.53) 55000 <0.3242>
a i	Obs.	NIES v1 NIES v2		ACOS B2.9		ACOS B3.3		RemoTeC V2.1	
n		GU GU	GU	w/ QF	wo/ QF	w/QF	wo/ QF	w/ QF	wo/ QF
Н	3865612	32836 <0.0084> (1)	63699 < <mark>0.0165></mark> (1.94)	170901 < <mark>0.0442></mark> (5.20)	583757 <0.1510> (17.78)	74423 <0.0193> (2.27)	421801 <0.1091> (12.85)	38391 <0.0099> (1.17)	214460 <0.0555> (6.53)
Μ	169663	31854 <0.1877> (1)	21338 < <mark>0.1258</mark> > (0.67)	23333 < <mark>0.1375></mark> (0.73)	77222 <0.4551> (2.42)	5440 <mark><0.032></mark> (0.17)	73470 <0.4330> (2.306)	11868 < <mark>0.0670></mark> (0.37)	55000 <0.3242> (1.73)

Values in parentheses are derived against NIES v1

Values in brackets are derived against Total obs. (OB1D & SPOD) during 2009/06/03 to 2010/07/31

Quality Filter (QF) ACOS: Master Quality = GOOD NIES: GU RemoTeC: FLAG_QUAL=GOOD, GOOD_MGAIN, GOOD_GLINT

Courtesy ACOS and A.Butz

Survived scan rate during 2009/06/03 – 2010/07/31 Gain H

	NIES V02.xx	RemoTeC V2.1	ACOS B3.3	ACOS B29	NIES & RemoTeC	NIES & ACOS_B3.3	NIES & ACOS B2.9	ACOS B3.3 & RemoTeC V2.1	& RemoTeC & ACOS B3.3
Exposure Count (H)	63,699 2009/6/3) 38,391 2009/6/3	L 74,423 2009/6/3	3 170,901 2009/6/3	15,978	3 27,106	6 45,137	15,887	8,812
Comments	2003/0/3 s — 2010/7/31				Remo/NIES 0.25	ACOS/NIES	ACOS/NIES	Remo/ACOS	All/NIES 0.14

Matching condition

NIES_Obs_Time - 0.5(s) < ACOS_Obs_Time + 2(s) < NIES_Obs_Time + 0.5(s)

Lessons and Learned on Instrument

No	Items	Effects	Counter action on GOSAT	Counter action on GOSAT-2
1	Micro-vibration	Spectral distortion	Correction on L1	Match the delay value between laser and IR signal
2	Laser misalignment	Wavenumb er shift	-	Apply the monolithic mirror (improve robustness)
3	ZPD position shift	Changing spectral resolution	Reset operation	Improve the electronic design
4	Pointing offset	Geo- location error	Correction	Change the mechanical design
5	Non-linearity on LPF circuit	Spectral distortion	Correction on L1 & L2	Improve an analogue circuit
6	Non-linearity on ADC	Spectral distortion	-	Apply DC sampling or change the type of ADC
7	Non-linearity on Pre-amp	Spectral distortion	-	Improve an analogue circuit

Overview of User's Requirements - Brief summary of GOSAT WS -

- 1. Improve the aerosol detectability for precise X_{CO2} and X_{CH4} measurement (reduce bias errors)
- 2. Increase the precision and accuracy of single shot *"Flying TCCON"*
- 3. Extend or shift the band coverage of Band1, to precise retrieval of Fluorescence
- 4. Extend the sun-glint observation range

- 1. Maintain the global and continuous observation from space
- 2. *Keep or increase the spectra quality (lessons learned from GOSAT)*
- 3. Improve understanding of natural source/sink
- 4. Reduce bias and variation coupled with Aerosol information
- 5. Increase the number of good quality observation data
- 6. Measure CO

- 1. SNR> 300 (all bands), Resolution < 0.2 cm-1, optimize the spectral coverage for each bands.
- 2. High precise aerosol observation
- 3. Increasing the number of good quality observation
- 4. Increasing the number of clear sky observation
- 5. CO and Fluorescence measurement
- 6. Increase the robustness and reduce the risks and cost for technical points of view.

Preliminary concept of modification

Requirements	Technical points	Actions		
1)SNR	Reducing the noise	Optimize the spectral coverage Improve analog electronics		
	Increasing the signal	High modulation efficiency		
②Aerosol measurement	CAI-Band1 Spectrometer Improved observation	Imaging spectrometer Multi-angle measurement		
③Increasing the number	Increase sun-glint rage	Optimize pointing range		
of good quality observation	Self pointing control to direct the informative location	Intelligent sampling		
④Increasing the clear sky observation	Self pointing control to direct clear sky footprint	Intelligent pointing		
⑤CO and Fluorescence measurement	CO Band Optimize the fluorescence band	Add 2.3 micron band Shift the spectral coverage of O ₂ A		

Optimization of Spectral Coverage

Optimization of CO bandwidth

- We demonstrated wide and narrow band path optical filters.
- In hardware point of view, narrow band is suitable to get higher SNR.

Modification plan for FTS

Preliminary Specification of FTS

Items		Specification								
Orbit	Altitude	666km								
JIGIO	Revisit cycle	3 days, 14+2/3 orbit per day								
Pointing-	Coverage	Cross Track (+/- 35 deg.), Along Track (+/- 40deg)								
Mechanism	Sampling & pointing	Intelligent s	About 160 km interval Intelligent sampling and pointing by the target mode (optimized 56,000 points)							
IFOV			10.5km with imaging capability							
	Band	1 (P/S)	2 (P/S)	3(P/S)	4	5				
	Coverage (cm ⁻¹)	12900 -13350	5900 - 6350	4800 - 5200	4200 - 4300	650 - 1400				
FTS- Mechanism	Target	O ₂ A <u>Chlorophyll</u> Fluorescence	CO ₂ ,CH ₄	CO ₂	СО	CO ₂ , CH ₄ , O ₃				
	Sampling duration	4 sec								
	Resolution			0.2 cm	J-1					
	SNR Target		400 (for B1), 300 (for B2,3,4) albedo 0.3, SZA=30deg.							

Preliminarily specification of Upgraded Cloud and Aerosol Imager

CAI-Forward-Looking

Sample Image

Band	Center Wavelength [um]	Band Width [nm]	IFOV [km]	No.of Pixels (Cross Track)	Swath [km]	Tilt angle [deg.]
1*	0.340	20	0.5	2000	1000	+20
2*	0.430	20	0.5	2000	1000	+20
3	0.870	20	0.5	2000	1000	+20
4	1.60	90	1	500	500	+20
5	0.380	20	0.5	2000	1000	-20
6*	0.55	20	0.5	2000	1000	-20
7	0.87	20	0.5	2000	1000	-20
8	1.6	90	1	500	500	-20

*additional bands (tentative)

Extend Sun-glint coverage

- The current limit of sun-glint coverage is related with AT angle capability (+/-20deg =~ 40deg of latitude).
- The target is extending +/-40 deg. of AT angle travel by improved pointing mechanism.

Concept of Intelligent pointing

Use onboard camera data Within turnaround duration,

- 1. Take a picture (ex: 9 candidate IFOV by 1 shot)
- 2. Calculate the contrast and determine the clear pixel It is appeared the high contrast between the contaminated pixel and noncontaminated pixel.
- 3. change the PM position

Candidate IFOV

Contrast of pixel by pixel Or compare the radiance level

At least 2 times higher than that of non-intelligent pointing

2013/05/29

- 1. Improve FTS & CAI with small design modification
- 2. CO and aerosol measurement capability
- 3. New function: intelligent pointing and sampling

4. Launch target: the beginning of 2018

Backup slides

Time

Laser signal degradation caused by misalignment of metrology laser channel

Wavenumber shift

2013/05/29

The root-cause of ZPD shift are

- 1. electromagnetic noise on fringe/dephase detection, >> electronic design
- 2. High path filter on turn-around, >> electronic design
- 3. Vibration from pointing motion. >> mechanical design

Counteraction current instruments: operational reset by command.

Pointing Error

- Low path filter on Band1 circuit create artificial signal both of in- and outof-band.
- These artifacts leads systematic bias on the retrieved O₂ products.
- Empirically, the correction parameters were determined and applied on the recent L1B products.

Non-linearity on ADC

H-Gain Spectra Over Antarctica B1P

Motivation; Fraunhofer depth is depended on input radiance over Antarctica. (Ideally, the depth of Fraunhofer lines are independent of input radiance.)

- ADC character is highly affect the non-linearity of band1 data.
- Unfortunately, the correction scheme is still underdeveloping phase.

ADC effects on spectra

