Errors in Retrieved Gases and Inferred Fluxes Arising from Non-uniform Scene Illumination: A Case Study for the GeoCarb Mission

Jeff Nivitanont, <u>Sean Crowell</u>, Chris O'Dell, Greg McGarragh, Denis O'Brian, Eric Burgh, David Crian, Barrian Maara

- Instrument Spectral Response Function (ISRF) is characterized pre-flight, and is part of the "forward operator" in trace gas retrievals
 - Characterization is done with a uniform illumination across the slit
 - ISRF is treated as "known" in retrievals, but errors in the ISRF are a cause of errors in retrieved column gas concentrations
- Scenes with brightness variations across the slit due to gradients in surface albedo as well as cloud edge effects cause ISRF errors

Example Study: TROPOMI

TROPOMI studies XCO and XCH4 errors arising from brightness variations

Hu et al.: The operational methane retrieval algorithm for TROPOMI, Atmos. Meas. Tech., 9, 5423-5440, 2016

Fig. 8. Methane bias due to heterogenous slit illumination for spatially varying surface reflection over a marsh scene at Siberia close to the river Ob at latitude 62.8°N and longitude 72.1°E. Measurement simulations are performed with the instrument model by Landgraf (2016) for an instantaneous field of view of 3.4 km across the slit and 7.0 km along the slit.

- Simulation of XCH_4 retrievals over highly non-uniform scenes (Siberian swamps) •
- Pseudo-random bias of +/- 0.4% (\sim +/- 10 ppb XCH₄) •
- Averages out over larger areas (~ 100 x 100 km) .
- Would be super-imposed over maps of point sources •
- Impact on XCO₂ to be studied...

INADOINIO SOTO

The GeoCarb Mission:

Measuring Carbon Trace Gases and Vegetation Health from Geostationary Orbit

- GeoCarb will return observations of XCO2, XCO, XCH4, and SIF with a spatial resolution of 3km N-S by 6km E-W at nadir
- "Step and stare" observing mode along a slit ~3000km N-S in length every 9 seconds
- Flexible observing sequence allows GeoCarb to plan for seasonal variations in cloud cover, intensive campaigns

Instrument	Single slit, 4-Channel IR Scanning Littrow Spectrometer
Bands	0.76μm, 1.61μm, 2.06μm and 2.32μm
Measurem ents	O ₂ , CO ₂ , CO, CH ₄ & Solar Induced Fluorescence
Mass	155 kg (CBE)
Dimension	1.3 m x 1.14 m x 1.3 m
Power	400W (CBE)
Data Rate	10 Mbps
Daily Soundings	~4,000,000 soundings per day

Solar Induced Fluorescence, O₂, Clouds, Aerosol

 CO_2

 $CO_{2}, H_{2}O_{2}$ Clouds, Aerosol

CH₄, CO,

Mitigation Approaches

- One mitigation is to scan across the slit, effectively "blurring" the sharp gradients in brightness
- Another is to employ a "slit homogenizer": a hardware solution that scrambles the direction of the incoming light and removes the gradients across the slit

Scene Inhomogeneity Induced Errors

Trace Gas Errors as a Function of CoV

Both Concepts Constrain Regional Fluxes

Scene Inhomogeneity Induced Errors

No SH

SH included

- The slit homogenizer reduces scatter in our parametric approach this suggests an increased ability to
 - Remove systematic errors more effectively (visible above the noise)
 - Constrain surface fluxes on smaller spatial and temporal scales
- Even without the homogenizer, we are able to constrain regional scale fluxes well, assuming
 - No systematic errors, and
 - No transport errors
- What about spatially coherent errors? These are the limiting factor in terms of constraining fluxes.

Lamont, Oklahoma Study

No Homogenizer 400 Homogenizer Included 37.50 *σ*=2.5ppm 350 4 300 37.25 *σ*=1.1ppm 37.00 250 2 200 36.75 150 O 36.50 100 50 36.25 -2 0 -10.0-7.5 -5.0-2.5 0.0 2.5 5.0 36.00 XCO2 Errors (ppm) 35.75 -98.5-98.0-97.5-97.0-96.5-98.5 -98.0-97.5-97.0-96.5

7.5

10.0

How Do Errors Reduce With Averaging?

- Non-uniform illumination leads to errors that are important to characterize
 - Increased Scatter in Trace Gas Retrievals
 - Local effects may be tough to detect
- Errors can (and should) be mitigated with a slit homogenizer
 - 1-D Version is a simple piece of hardware that is well understood
 - 2-D Version is under development for the next generation of imagers
- Bias can be coherent on smaller spatial scales due to persistent albedo gradients – the slit homogenizer seems to remove these effects
- Future work: expand the analysis to include aerosol scattering as well as more challenging scenes