2009/11/18@Tokyo Level of Long-term Stabilization of Global Warming and Climate Change Risks

Comprehensive assessment of climate change impacts to determine the dangerous level of global warming and to determine appropriate stabilization target of atmospheric GHG concentration

Coastal hazards induced by climate change: an assessment of impacts, risks, and adaptation strategies

Makoto Tamura

Institute for Global Change Adaptation Science (ICAS), Ibaraki University E-mail: tamura@mx.ibaraki.ac.jp

S4-2(5) Project Team

National Institute for Land and Infrastructure Management: Takeshi Suzuki Ibaraki University: Kazuya Yasuhara, Hideo Komine, Satoshi Murakami, Hiromune Yokoki, Yuji Kuwahara, Hisamichi Nobuoka, Makoto Tamura Kyushu University: Guanqi Chen, Yasuhiro Mitani

Outline

Introduction

• The coastal hazards induced by climate change

- Physical & economic impacts
- Storm surge in coastal area
- River flooding
- Liquefaction
- Slope disaster
- Perspectives
 - Adaptation
 - Conclusion

Introduction

Introduction

- Evaluate the impact on coastal area due to climate change in Japan
 - Compound disaster
 - Natural hazards combined with climate change
 - Storm surge, river flooding, liquefaction, slope disaster
- Assess the economic damage
 - Stock (assets) or flow (productivity) of the economy
- Cost-benefit analysis of impacts and adaptation is not considered YET
 - Next research target

Climate impacts in Japan

• c.f., IPCC(2007)

Source: JMA /MEXT/MOE (2009) "Climate change and the impact in Japan" Based on Comprehensive Impact Assessment Team(2009)

Impacts on coastal areas

MIROC: SRESA1B scenario GDP in Japan (2008): 556[T¥-real]

Based on Comprehensive Impact Assessment Team(2009)

External forces and hazards

Differences in each research

Table Researches in S4-2(5) project

	Storm surge	River flooding	Liquefaction	Slope disaster
Area	Coastal area in 3 major bays, West- Japan	Tone, Shinano, Yoshino, Chikugo river	Tokyo Bay area, Ishikari plain (Hokkaido)	Kyushu
Period	2000-2100	2100	1990-2100	2000–2100
External forces	SLR:0 ~ 100cm, storm surge: 0-1.6	SLR:59cm+storm surge + tide level	1)SLR:88cm 2)SLR:88cm+Rainf all (RCM20)	Typhoon (wind: +7.5%), Rainfall(+25%), Earthquake
Method	Level flood method, etc	Level flood method, etc	Ground model	Monte Carlo method of typhoon and damage
Economic assessment	Capital stock (assets)	Money flow (productivity)	Capital stock (assets)	Capital stock (assets)

Inundation by storm surge in coastal area

Takeshi Suzuki

National Institute for Land and Infrastructure Management (NILIM)

Method of storm surge and river flooding

Inundation by storm surge in coastal area (West-Japan)

Inundated area of storm surge in coastal area (West-Japan)

• Relationship between impacts and hazard

Sensitive to SLR!

Inundated population of storm surge in coastal area (West-Japan)

(b) Scale of storm surge

Inundation damage of storm surge in coastal area (West-Japan)

- Estimation is based on the manual of MLIT (Ministry of Land, Infrastructure, Transport and Tourism)
 - Assess the stock (property)

Sensitive to SLR!

Summary: Storm surge

- This study assess the impact of inundation in coastal area due to storm surge
 - inundated area, population, and inundation damage
- The risk linearly increases as the impacts does
 - No clear threshold
- Adaptation needs as the impact increases

Fig. Climate-change impact function

River Flooding

Makoto Tamura, Yuji Kuwahara, Himune Yokoki, Nobuo Mimura Ibaraki University

Economic losses of river flooding

Input-output analysis with mixed exogenous and endogenous variables ("Mixed" I-O analysis)

- Estimate the economic losses of <u>potential inundated</u> <u>area</u> around rivers
 - Potential inundated area by Kuwahara et al. (2008)
 - Using level flood method and GIS
 - Scenario: SLR: 59cm + storm surge + tide level
- Investigated rivers

(1)Kuji, (2)Naka, (3)Tone, (4)Ara, (5)Shinano,
(6)Tenryu, (7)Kiso, (8)Yodo, (9)Yoshino, (10)Chikugo

- This study indentifies direct economic loss in **agriculture** in **the four rivers** and estimates indirect losses among industries and regions.
- Apply the "Mixed" Input-Output analysis to the economic assessment of potential inundated area
 - - c.f., Miller and Blair (1985)
 - Construct interregional I-O tables according to flooded area (i.e. flooded pref. & rest of Japan)

Analysis on economic productivity/flow

Fig. Factors of river flooding

"Mixed" I-O analysis Direct effect lead by flooding is considered as the change in outputs in specific industries.

 \Leftrightarrow analysis on stock of the economy

Simulated areas and rivers

Fig. River locations and prefectures in the inundated areas

Direct and indirect losses of river flooding (part 1)

(million yen)							
		(1) Tone River			(2) Shinano River		
		Flooded prefecture	Rest of Japan	Total	Flooded prefecture	Rest of Japan	Total
Primary industry	Agriculture	22225	271	22497	4050	42	4091
		(100)	(1.2)	(101.2)	(100)	(1.0)	(101.0)
	Other primary industry	916	103	1019	306	19	325
		(4.1)	(0.5)	(4.6)	(7.6)	(0.5)	(8.0)
Secondary industry	Light industry	369	1169	1537	49	131	181
		(1.7)	(5.3)	(6.9)	(1.2)	(3.2)	(4.5)
	Heavy industry	1441	3696	5137	264	571	835
		(6.5)	(16.6)	(23.1)	(6.5)	(14.1)	(20.6)
	Other secondary industry	409	277	685	43	55	98
		(1.8)	(1.2)	(3.1)	(1.1)	(1.4)	(2.4)
Tertiary industry		4302	3366	7668	737	457	1194
		(19.4)	(15.1)	(34.5)	(18.2)	(11.3)	(29.5)
Total		29662	8882	38544	5449	1275	6724
		(133.5)	(40.0)	(173.4)	(134.5)	(31.5)	(166.0)

Note: Figures in parentheses indicate the ratio of economic loss to direct loss (%).

Table Direct and indirect losses (part 1)

....

Direct and indirect losses of river flooding (part 2)

(million yen)

		(3) Yoshino River			(4) Chikugo River		
		Flooded prefecture	Rest of Japan	Total	Flooded prefecture	Rest of Japan	Total
Primary industry	Agriculture	14260	153	14413	20173	216	20389
		(100)	(1.1)	(101.1)	(100)	(1.1)	(101.1)
	Other primary industry	879	59	938	1156	122	1277
		(6.2)	(0.4)	(6.6)	(5.7)	(0.6)	(6.3)
Secondary industry	Light industry	330	582	912	485	846	1330
		(2.3)	(4.1)	(6.4)	(2.4)	(4.2)	(6.6)
	Heavy industry	513	2665	3179	1516	3217	4733
		(3.6)	(18.7)	(22.3)	(7.5)	(15.9)	(23.5)
	Other secondary industry	124	277	400	213	337	551
		(0.9)	(1.9)	(2.8)	(1.1)	(1.7)	(2.7)
Tertiary industry		2630	2461	5091	5454	1840	7294
		(18.4)	(17.3)	(35.7)	(27.0)	(9.1)	(36.2)
Total		18737	619 7	24934	28997	6578	35575
		(131.4)	(43.5)	(174.9)	(143.7)	(32.6)	(176.3)

Note: Figures in parentheses indicate the ratio of economic loss to direct loss (%).

Table Direct and indirect losses (part 2)

Differences in composition of indirect losses

Fig. Differences in composition of indirect losses for the four rivers

Summary: River flooding

- This study examines the flow and composition of economic losses regarding the river flooding, rather than the volume.
 - Direct losses per area range from 1.01 to 2.82 million yen/ha.
 - The total losses (direct and indirect losses) are 1.66 to 1.76 times greater than direct losses.
 - The ratio of indirect losses in the outside area to total indirect losses varies from 42.7 to 58.1%.
- The analyses reveal the differences of economic losses per area, and the scale of indirect losses at the river basin level.
- The results support adaptation strategies to river flooding should be implemented at the river basin level.

Earthquake

Liquefaction

Hideo Komine, Kazuya Yasuhara, Satoshi Murakami Ibaraki University

Economic assessment of liquefaction

Objective area: Coastal area in the eastern part of Tokyo

- Collection of ground data
- Ground modeling (right Fig.)
- Estimation of rise in GWL due to climate change and SLR
- Hazard map of liquefaction
- Assess the economic losses
 - Assessment of stock

$$Yp = 0.0653 \times H \times Se$$

Yp: Economic loss (Yen)*Se*: Minryoku-index*H*: Correction value of liquefaction

Fig. Damage of liquefaction due to SLR + climate change(rainfall)

Total damage increases about 400 bill. yen

Inland area is higher than coastal area

 \rightarrow The rising GWL can be limited since GWL is already high in coastal area. Most inland area suffers from land subsidence.

Perspectives

Options of adaptations

Table Adaptation in coastal areas

	Adaptation				
	Protection	Accommodation	Retreat		
Inundation	 Elevating dikes 	Hazard maps	• Development regulations for		
caused by	 Coastal vegetation 	•Change in land use	disaster-prone coastal areas		
storm surge	 Large floodgate 	 Protection of coastal 	 Land use and regional 		
Storm Surge	 Early warning system 	ecosystems such as mangroves	planning		
	•Evacuation system	•Strict regulations in disaster-	 Evacuation from highly 		
		prone areas	vulnerable coastal areas		
		•Disaster insurance	 Subsidies for relocation 		
River	 Elevating dikes 	Hazard maps	 Land use and regional 		
floodina	 Blocking the water 	 Change in land use 	planning		
	 Early warning system 	•Strict regulations in disaster-	 Evacuation from highly 		
	 Evacuation system 	prone areas	vulnerable coastal areas		
		•Disaster insurance	 Subsidies for relocation 		
Liquefaction	 Monitoring ground water level 	Hazard maps	 Land use and regional 		
	 Elevating ground 	 Change in land use 	planning		
	 Reinforcement of ground 	•Strict regulations in disaster-	 Evacuation from highly 		
		prone areas	vulnerable coastal areas		
		•Disaster insurance	 Subsidies for relocation 		
Slope	 Prevention pile 	Hazard maps	 Land use and regional 		
disaster	 Early warning system 	Risk maps	planning		
	 Evacuation system 	 Strict regulations in disaster- 	 Evacuation from highly 		
		prone areas	vulnerable coastal areas		
		 Disaster insurance 	 Subsidies for relocation 		

Conclusion

- We analyze climate-change-induced natural hazards near coasts and rivers, and in relevant inland areas.
- In terms of climate impact function, the study implies that there is no clear threshold between inundation and climate impacts such as sea level rise and storm surge.
- We estimate economic losses induced by climate change.
 - from the viewpoints of water damage, such as that by storm surge and inundation, and geotechnical damage such as liquefaction and slope disaster.
 - Loss of stock or flow
- We seek to present appropriate adaptation strategies and techniques that correspond to each site, where different traditions, cultural backgrounds, and different ways of life must exist.
- For that reason, a concept and a menu for adaptation to climateinduced natural hazards is tentatively proposed.
 - Cost-benefit analysis is near future target.
- Based on the summation of experiences and case studies, this must reflect policy-making against disaster reduction, economic loss, and for finding the most suitable adaptation techniques.

Thank you for your attention!