Impact Assessment of Climate Change on Rice Production in Asia in Comprehensive Consideration of Uncertainties in Future Climate projections

Yuji Masutomi¹⁾,

Kiyoshi Takahashi ²⁾, Hideo Harasawa ²⁾, and Yuzuru Matsuoka ³⁾

1): Center for Environmental Science in Saitama
2): National Institute for Environmental Studies
3): Kyoto University

Introduction I -Uncertainties in impact assessment-

1st Key Question

• How much impact does climate change have in comprehensive consideration of uncertainty in future climate projections?

2nd Key Question

• Is net effect of elevated CO2 concentration positive or negative?

– In the 2020s, 2050s, and 2080s

Method

- How to take uncertainties into consideration?-

- 2. Standard deviation
- 3. Probabilities

• Step1

 Calculation of multi-impacts by using multi-climate projections

• Step2

 Assuming that each impact is equally possible, we calculate statistical metrics.

Ex. -5%, 5%, -15%, -10%, 9%Ave. = [-5+5+(-15)+(-10)+9]/5= -3.2 [%]Stdev. = 10 [%]Pr. of yield decrease = 60 [%]

Climate projections (from PCMDI)

Country	Model name	A1B (18 GCMs)	A2 (14 GCMs)	B1 (17 GCMs)		
Norway	BCCR-BCM2.0		0	0		
Canada	CGCM3.1(T47)	0	0	0		
Canada	CGCM3.1(T63)	0		0		
France	CNRM-CM3	0	0	0		
Germany	ECHAM5/MPI-OM	0	0	0		
Germany / Korea	ECHO-G	0	0	0		
China	FGOALS-g1.0	0		0		
USA	GFDL-CM2.0	0	0	0		
USA	GFDL-CM2.1	0	0	0		
USA	GISS-AOM	0		0		
USA	GISS-EH	0				
USA	GISS-ER	0	0	0		
Russia	INM-CM3.0	0	0	0		
France	IPSL-CM4	0	0	0		
Japan	MIROC3.2(hires)	0		0		
Japan	MIROC3.2(medres)	0	0	0		
Japan	MRI-CGCM2.3.2	0	0	0		
UK	UKMO-HadCM3	0	0	0		
UK	UKMO-HadGEM1	0	0			

Crop model

M-GAEZ model

- Based on Global Agro-Ecological Zone model (GAEZ-model)
 - **GAEZ-model** was Developed by IIASA and FAO (Fischer et al., 2002)
 - was used for the assessment of global food security in IPCC AR4.
 - is one of main tools used by FAO for analyses of land resources

Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results

RR-02-02 March 2002

Manual of GAEZ

	20	020	2050		2080		
	Million	s at risk	Millions at risk		Millions at risk		
Reference	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	AEZ- BLS	DSSAT- BLS	
A1	663	663	208	208	108	108	
A2	782	782	721	721	768	769	
B1	749	749	239	240	91	90	
B2	630	630	348	348	233	233	

Number of hunger (IPCC AR4)

FAO report

M-GAEZ methodology

Potential Yield Yield limited by Temperature and Radiation Photosynthesis (T,R) – Respiration (T)

2

Multiplier determined by soil water stress

Multiplier related to constraints by insect, pest, weed, etc.

Ex. Yearly warm region has high agro-climatic stress.

Crop can not grow in rock and sandy region

Advantages and Disadvantages of M-GAEZ model

• Advantages

- Multi-crops: 26 crops (154 sub-species)
- Soil water balance (FAO56 methodology)
 - crop water demand can be calculated.
- Constraints by pest, insect, weed are considered
 - But poor!
- Disadvantages
 - Old type process model (or semi-process model)
 - Based on 1970s' knowledge
 - No soil nutrient dynamics (no fertilizer effect)

Validation of M-GAEZ

Comparison of yields between simulation and observation

Result I - without CO2 fertilization effect -

Result II - with CO2 fertilization effect -

Result III

without CO2 fertilization effect

with CO2 fertilization effect

	1990s-2020s		1990s-2050s		1990s-2080s				
	A1B	A2	B1	A1B	A2	B1	A1B	A2	B1
ACP without CO ₂ effect	-5.2	-6.3	-4.2	-8.6	-9.4	-5.4	-16.8	-22.0	-8.4
ACP	-3.3	-4.5	-2.5	-0.3	-0.9	0.2	-5.0	-9.9	-0.5
SDCP	3.2	3.2	3.1	3.9	3.7	3.3	7.2	8.4	4.8
Pr(<i>CP</i> <0)	83.3	100.0	76.5	44.4	57.1	52.9	72.2	85.7	47.

• In the 2020s

- Little difference in average changes in production (*ACP*s) among SRES scenarios
- The probabilities of production decrease (Pr(CP < 0)) are high for all SRES scenarios
- In the 2050s
 - Positive and negative effects are in equilibrium
- In the 2080s
 - Large difference in *ACP*s and Pr(*CP*<0))s among SRES scenarios.
 - A2 has largest adverse effect although A2 has the largest CO2 fertilization effect

Summary of the results

• Key questions

- How much impact does climate change have in comprehensive consideration of future climate projections?
- Is net effect of elevated CO2 concentration positive or negative?

• Our answer

- Net effect of elevated CO2 concentration in comprehensive consideration of future climate projections is negative in the 2020s and 2080s, and nearly zero in the 2050s.
- Suggestions
 - <u>It is necessary to take immediate adaptive actions in the near future,</u> <u>regardless of socio-economic development.</u>
 - Because the probabilities of production decrease are high for all SRES scenarios in the 2020s
 - <u>The reduction of CO2 emission in the long term has a large potential to</u> <u>mitigate negative changes.</u>
 - Large difference in change in production among SRES scenarios in the 2080s
 - High CO2 concentration scenario, A2, has largest adverse effect in the 2080s, while low CO2 concentration scenario, B1, has smallest adverse effect in the 2080s.

Thank you for your attention!