Constraining uncertainties of impact assessment using multi-model climate scenarios

Seita Emori

Chief, Climate Risk Assessment Research Section National Institute for Environmental Studies

Associate Professor Center for Climate System Research, Univ. of Tokyo

JAPAN

Measuring skills of climate models ex. for global precipitation pattern (Nohara et al., 2006)

regions. Background shows ensemble mean change of annual runoff, in percent, between the present (1981-2000) and 2081-2100 for the SRES A1B emissions scenario; blue denotes increased runoff, red denotes decreased runoff, Underlving map from Nohara et al. (2006) IF3.81.

Weighted Multi-Model Ensemble Mean of Runoff

How to choose the metric?

Is RMS or pattern correlation a good indicator of <u>reliability of future projection?</u>
-> not obvious

Key Uncertainties:

A proven set of model metrics comparing simulations with observations, that might be used to narrow the range of plausible climate projections, has yet to be developed. (IPCC AR4 TS)

Runoff Changes from Various Models

1st mode (47%)

2nd mode (19%)

Inter-model variation in the two modes

Patterns of Present Climate Biases regressed on the 1st mode

(a) ∆R

Patterns of Present Climate Biases regressed on the 2nd mode

(a) ∆R

Biases of models along the principal modes

Biases = Model minus ERA40 (T) or CMAP (P)

