

Water resources impact on climate change in Japan

So KAZAMA,

Department of Civil Engineering TOHOKU UNIVERSITY

Water resources impacts

- **Snow** water resource decline
- Higher **flood** risk
- Higher **slope** failure risk
- Worse water **quality**

Snow water resource decline

Model development

Application for climate change

Simulation

SWE Dis.

1998.12~1999.4

Vulnerability of Snow Water Resources

Dif of SWE = $SWE_i - SWE_j$

1993—1999(less—Ave), 2000—1999(Heavy—Ave) 2005—1999(Ave—Ave), 2000—1993(Heavy—less) Comparing 4 cases of SWE distribution

5 classes of DSWE (Difference of SWE)

Focus on class 1 and 2

Class1	1000mm~
Class2	500 ~ 1000mm
Class3	100 ~ 500mm
Class4	0 ~ 100mm
class5	~ 0mm

Kazama et al., 2008. Hydrological Processes

Ratio of SWE to Irrigation in spring

		SWE(m3)	Rice area (km2)	SWE/Ra) (m3/m2)	SWE/Water demand for irrigation
Mogami River	less	8.83×10^{8}	717	1.23	0.82
	more	32.0×10^{8}	Yamagata	4.46	2.97
Kitakami River	less	0.96×10 ⁸	795	0.12	0.08
	more	4.05×10^{8}	Miyagi	0.51	0.33
Shinano River	less	32.1×10^{8}	1210	2.65	1.76
	more	78.5×10^{8}	Niigata	6.49	4.32

CONCLUSION Some paddy fields will face to water restriction.

HEST

Higher flood risk

Model development

Application for climate change

Extreme rainfall increase (IPCC, 2007) Heavy rainfall produces frequent flooding.

Rainfall with 100yrs return period increase 20% from now in 2100. (JMA RCM results)

It is necessary to evaluate economic damage in 2100 for the adaptation.

Calculation of economic damage by flooding after climate change in a whole Japan using extreme rainfall data.

Quantifying the adaptation cost using the increase of damage cost from current flood control.

17.7.2004, MLIT

Model Verification

• Flood simulation

landuse	п		
Agri.&Forest	0.060		
Traffic area	0.047		
Others	0.050		
Urbaned	0.050		
Waterbody &Beach	0.020		

WD 0.0m, 0.5m, 1.0m WD 1.5m, 2.0m, 2.5m

Results (case : 100yrs RTN)

Estimation of damage cost

1) Paddy field

D.C. = rice production/area \times rice price \times inundated area

 \mathbf{X} damage rate to water depth

2) Crops field

D.C.=crops production/area×average crops price×inundated area ×damage rate to water depth

3) Buildings (4) Golf links)

D.C.of houses=damaged floor area to water depth \times price/m²

 \times damage rate to water depth

D.C.of house articles=house number to water depth

×house article value/house×damage rate to water depth D.C.of asset of office=worker number×

(amortized asset value/person×coefficient to water depth+

stock asset value/person×damage rate to water depth)

5) Public facilities

D.C.=general damaged asset value $\times 1.694$

Estimation of adaptation cost

Annual expected damage \rightarrow Annual adaptation cost (B/C=2.3)

Billion USD

RTN Period	Annual extreme P.	Damage Cost	Interval Av. Damage	Interval probability	Av. Annual expected damage cost
5	0.20	380			
10	0.10	550	470	0.1	47
30	0.03	770	660	0.067	44
50	0.02	910	840	0.013	11
100	0.01	1,120	1,020	0.010	10

This amount is similar to annual expense of flood control in Japan.

Adaptation cost is 4.6bilion USD

Annual Expected Damage Cost

Urban Areas have huge damage. Rural areas have less damages.

CONCLUSION How should we consider land planning?

100 million JPY/km² = 1 million USD/km²

n

200

400

600

800

1000

単位:億円

Kazama et al., 2009. Sustainability Science

Higher slope failure risk **Model development** Application for climate change

Fig. Slope hazard map by literature

Fig. Hazards map in Iwaki

Where P is **probability**, β_0 is intercept, β_h : is coefficient of hydraulic gradient,

 β_r is coefficient of hydraulic gradient, hyd Y_h is hydraulic gradient, reliif Y_r is relief energy

Sediment hazard map

Slope failure probability on 30 years return period downpour.

100mm/day Over times

Relationship between days of over 100mm/d and damage costs

CONCLUSION Huge water disasters increase rapidly caused by climate change.

oku Universiti

Model development Application for climate change

гоноки

Relationship between probability with return period of 5years and specific sediment yield

An exponential equation shows the relationship. \rightarrow sediment production model

HEST

Water quality problems

□ Influence of **downpour**

- •Use of L-Q formula
- •Extreme rainfall input to L-Q formula for BOD and SS

□ Influence of **drought** period

- Use of turbidity deposit function
- Input of drought period to a deposit function for BOD and SS

Show relationship between extreme period (return period) and BOD and SS.

Downpour affects WQ (RTN 50 years / 10years)

Drought affects WQ change (RTN50uyears/RTN10years)

Conclusions

- 1) The probability according to extreme precipitation could show **the spatio-temporal distribution** of water disaster hazard.
- 2) The rainfall pattern change affects **water quality** and resources management.
- 3) The high influence areas were specified through the distribution **map** according to return period.
- 4) This algorithm will be applied using multi-GCM models.