A-29 愛媛県におけるオキシダント濃度

1. はじめに

愛媛県は四国北西部に位置し、南は四国山地を後背地に、北は瀬戸内海に面した東西に細長い地形を有している。このうち、工場・事業場等は、本県中央部の中予地域(特に松山市)及び東部の東予地域に集中立地しており、これらの地域では、大気汚染への影響が考えられる。このことから、本県では、東予地域を中心に大気汚染測定局を設置(中予地域は松山市)し、常時監視調査を実施している。

これまでの調査結果では、二酸化硫黄、二酸化窒素及び一酸化炭素については、全ての測定局で環境基準を達成しているが、光化学オキシダントについては、全ての測定局で環境基準非達成となっている。また、近年の光化学スモッグ注意報発令は、年間「1回」あるいは「なし」であるが、オキシダントバックグラウンドに幾分上昇傾向がみられる。

2. 選定5局の属性情報

2.1 位置:地勢:交通等

東予地域は、東西約 70km、南北約 25km の細長い地形をなしており、北は瀬戸内海の燧 灘に面し、東は讃岐山地、西は高縄山系、南は標高 1,000m を超える四国山地が連なり、三 方を山地で囲まれている。気候は、瀬戸内式気候で、年間を通じて降水量が少なく、比較的 温暖であり、海陸風が卓越する。

主な工業は、紙・パルプ・化学・非鉄金属・機械器具製造などで、加えて火力発電所があり、工場・事業場が海岸部に集中立地し、固定発生源となっている。また、国道 11 号や四国 縦貫自動車道が東西に走っており、移動発生源となっている。

選定5局の詳細は、表1のとおりである。

2.2 移設・測定方法・選定理由について

• 移設状況

金子は、1993年4月に局舎を西に約500m移転した。

· 測定方法

選定5局は、すべて向流吸収管自動洗浄装置付きの吸光光度法で測定している。

· 選定方法

オキシダント測定局は、東予地域に8局設置しており、このうち四国中央市から1局、新居浜市から2局、西条市から2局を選定した。

金子(38205010)

東予地域のほぼ中央にあたる新居浜市の中心部に位置し、気象測定局も兼ねているため、気象データとの解析が可能なことから選定した。

伊予三島(38209050)・高津(38205080)・西条(38206050)・東予(38212040)

東予地域を偏らず全体を評価できるように、直線上でほぼ等間隔にある四国中央市の伊予

三島、新居浜市の高津、西条市の西条及び東予を選定した。

なお、5 局とも、大気汚染緊急時の措置を規定した「愛媛県大気汚染緊急時対策要綱」 に定める光化学スモッグ注意報の発令対象測定局である。

3. 解析結果

3.1 Ox 濃度年平均値の経年変化の状況 (図 1)

5 局とも 1991 年は低めであるが、大きな濃度変化は見られず $17.1 \sim 30.6 ppb$ の間で推移している。傾きは - $0.12 \sim 0.42$ で金子がやや減少しているが、その他の局は、ほぼ横ばいから多少増加している。高津がもっとも増加傾向が見られる。

3.2 高濃度 Ox(80ppb 以上、最大値)の発生状況 (図 2, 図 3)

· 80ppb 以上の時間数

多く記録しているのは、1990年に西条で 209時間、東予で 174時間、1991、1996、1997、2000及び 2002年に高津で 109、129、146、114、108時間である。 1990~2003年度の期間中の傾きは - 5.49~2.33の範囲にあり、西条 - 5.49、東予 - 3.57であるが、1990年の時間数が多いことが影響しており、年による差が見られる。

· 年最大值経年变化

年と測定局間でばらつきが見られるが、1990~2003 年度の期間中の傾きは - 1.76~0.86 であり、伊予三島を除き減少傾向にある。1992 年は 5 月から 8 月にかけて、また、1995 年は 5 月と 7 月に雨の日が多かったため、5 局とも 80ppb 以上の時間数及び最大値が小さくなっており、気象の影響を強く受けていると考えられる。1990~2003 年度では、5 局中、高津が 14 年中 7 年、年最大値を記録している(最大値 141ppb、1993 年)。 光化学スモッグ注意報は 1990、1991、1993、1994、1997、1998、1999 年に発令している。2000 年以降の最大値は、2002 年、高津、伊予三島で 116ppb であり、2000 年以降は東予地域では注意報を発令していない。

3.3 Ox 濃度の季節的な特徴 (図 6, 図 7)

・ 月平均値の季節変動

5 局とも月平均値では 1 月から徐々に上がり、4、5 月でピークとなり、6、7 月にかけて減少し、秋(9 月)に多少あがり、冬にかけて減少がみられる。最低値は 5 局とも 11 月であった。

· 60ppb 以上の時間数の分布

5 局とも 5 月がもっとも多く、次いでその前後の月である 4 月及び 6 月、次に 8 月となっており、7 月を谷とした二山型の傾向が見られるが、金子、高津(新居浜市)は他市の局と比較すると、8 月のピークが高く、二山型がやや明瞭である。

注意報発令レベル(120ppb 以上)の高濃度オキシダントの発生は 6 月から 8 月にかけてで

あり、年によって違っている。

3.4 Ox 濃度年度別平均値と平年値(1990~2003)との偏差の状況 (図 4.1,図 4.2)

・ 1990 年度以降の増減傾向

全期間をとおしてほぼ横ばいで推移している。1991 年度に 5 局ともやや低いレベルを示した。この年の 4 月から 8 月にかけての降水量は平年並であったが、日射量は平年に比べやや少なめからかなり少なめであり、オキシダント生成過程に何らかの影響を及ぼしたと考えられる。

・ 平年値(1990~2003)との差が大きかった期間・年度 偏差が大きかったのは、-4以上が1991年は高津、西条、伊予三島、東予の4局、1992年は高津の1局、1995年は高津の1局、1998年は東予の1局、+4以上が1990年で西条、東予の2局、2002年は高津の1局であった。

3.5 Ox 濃度ランク別時間数経年変化の状況 (図 5a~図 5g)

年や測定局によってばらつきがあるが、全般的には 40~59ppb ランクを中心にその前後の 濃度ランクで時間数の増加が見られ、これに対応して低濃度ランクの時間数が減少し、高濃 度ランクではあまり変化は見られない。

3.6 NOx、SPM 濃度の季節的な特徴 (図 8, 図 9)

· NOx 濃度の月別平均値

5 局とも、1 月から徐々に上昇し、3、4 月でピークとなり、9 月にかけてなだらかに減少し、10 月から 11 月にかけて再び上昇し、12 月でピークとなる。

· SPM 濃度の月別平均値

3 局とも、4 月から 6 月にかけてピークとなり、8 月以降、徐々に減少し、1 月が最小値となる。4 月から 6 月は黄砂の時期と重なるので、黄砂による影響が考えられる。なお、5 局のうち高津、伊予三島では SPM を測定していない。

3.7 NOx 及び SPM 濃度と Ox との関係 (図 10,図 11)

Ox 濃度 / NOx 濃度は $0.82 \sim 1.39$ 、Ox 濃度 / SPM 濃度は $0.64 \sim 0.73$ である。いずれも、明らかな相関は見られなかった。(P > 0.05)

(相関係数 Ox - NO x - 0.49、Ox - SPM 0.46)

東予の Ox 濃度 / NOx 濃度 (1.39) が他に比べて高いのは、発生源の NOx 量が少ない地域にあると考えられる。

4. まとめと今後の課題

Ox 濃度年平均値の経年変化の状況は、1990 年以降、ほぼ横ばいないしわずかに増加しているが、大きな変化は見られない。

高濃度 Ox(80ppb 以上、最大値)の発生状況は、気象の影響を強く受けていると考えられ、 年、測定局でばらつきが見られる。

Ox 濃度の季節的な特徴は、月平均値と 60ppb 以上の時間数の分布より、5 月頃を中心に高濃度オキシダントが発生し、7 月を谷とする二山型の傾向が見られる。

濃度ランク別経年変化では、80ppb 以上の高濃度についてはあまり変化が見られないが、低濃度ランクが減少し、中濃度ランクが増加していることから、大陸からの移流の可能性も考えられる。

NOx 及び SPM 濃度と Ox との関係については、いずれも、明らかな相関は見られなかった。

2003年度を追加した結果についても、前回と同様な解析結果が得られた。今後は、平均気温・日射量などの気象条件との関係について、グループで協議を行い、解析を進めたい。

[執筆者:泉 喜子(愛媛県立衛生環境研究所)]

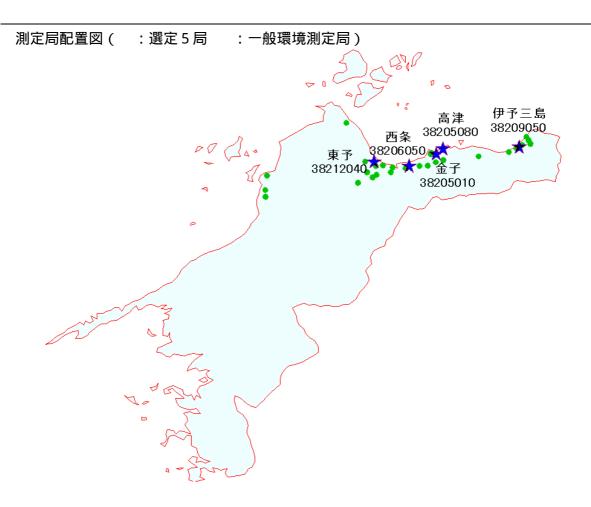


表1 選定5局の属性情報(愛媛県)

測定局名	金子	高津	西条	伊予三島	東予
国環研コード番号	38205010	38205080	38206050	38209050	38212040
測定局設置年月	1969年10月	1973年9月	1974年3月	1975年3月	1975年3月
オキシダントの	1990年4月~	1990年4月~	1990年4月~	1990年4月~	1990年4月~
データ解析期間	2004年3月	2004年3月	2004年3月	2004年3月	2004年3月
周辺状況	新居浜市の中心	新居浜市の中心	西条市の中心付	四国中央市の中	西条市
	付近	付近	近	心付近	市営壬生川住宅
	金子小学校校庭	高津小学校校庭	西条児童公園内	県四国中央総合	敷地内
	内	内	敷地	庁舎屋上	
測定局移設状況	1993年4月西に	なし	なし	なし	なし
	約 500m 移転				
周辺状況の変化	特になし	特になし	特になし	特になし	特になし
オキシダントの測定	1971年11月	1973年9月	1975年4月	1975年4月	1975年4月
方法の変化	OX 設置	OX 設置	OX 設置	OX 設置	OX 設置
(年月は測定機	1992年3月	1996年3月	1990年3月	1998年3月	1990年3月
の設置または更	OX OXW	OX OXW	OX OXW	OX OXW	OX OXW
新時期)					
備考				旧伊予三島市	旧東予市

OX は吸光光度法向流吸収管自動洗浄装置なし、OXW は吸光光度法向流吸収管自動洗浄装置付き、O3UV は紫外線吸収法を示す。

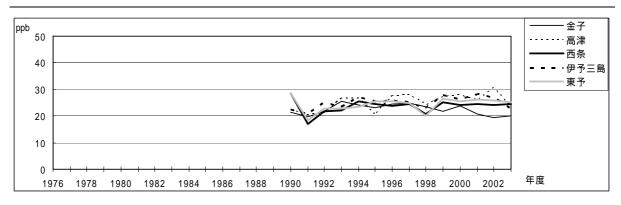


図 1 Ox 濃度の年平均値経年変化

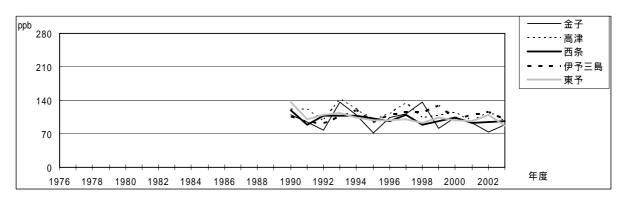


図 2 Ox 濃度の年最大値経年変化

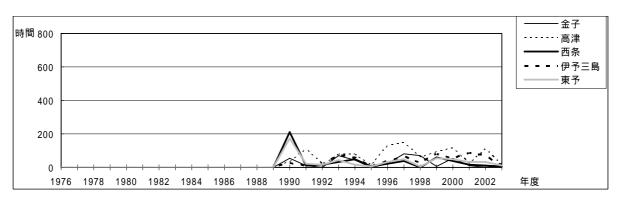


図3 Ox80ppb 以上の時間数の経年変化

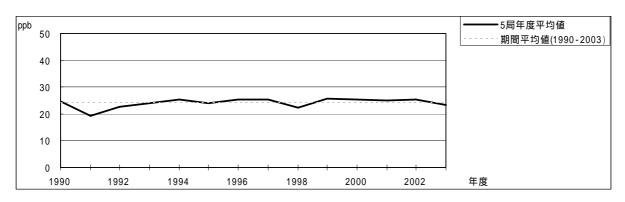


図 4.1 Ox 濃度の年度別平均値と平年値との偏差

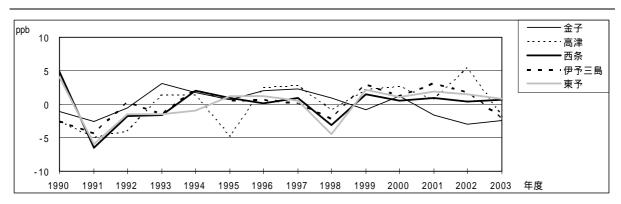


図 4.2 Ox 濃度の年度別平均値と平年値との偏差(局別)

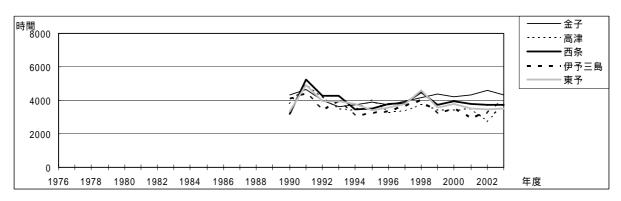


図 5a Ox 濃度ランク別 (20ppb 毎) の時間数の経年変化 (0~19ppb)

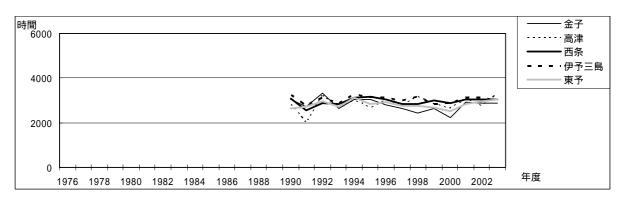


図 5b Ox 濃度ランク別 (20ppb 毎) の時間数の経年変化 (20~39ppb)

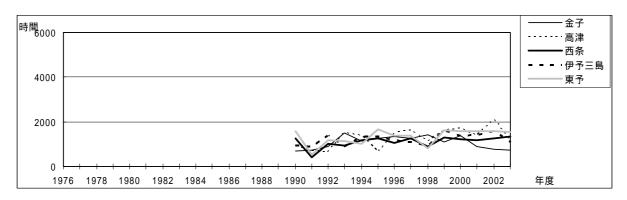


図 5c Ox 濃度ランク別(20ppb 毎)の時間数の経年変化(40~59ppb)

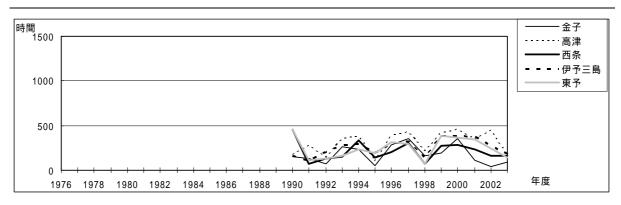


図 5d Ox 濃度ランク別 (20ppb 毎) の時間数の経年変化 (60~79ppb)

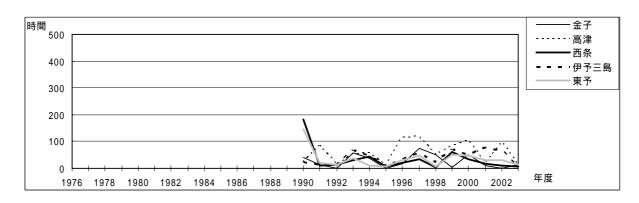


図 5e Ox 濃度ランク別(20ppb 毎)の時間数の経年変化(80~99ppb)

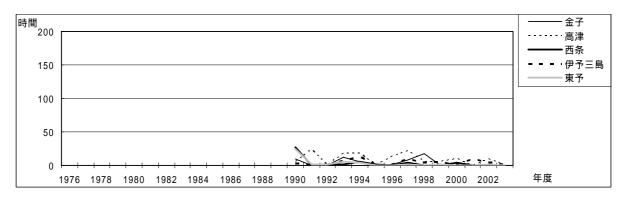


図 5f Ox 濃度ランク別 (20ppb 毎) の時間数の経年変化 (100~119ppb)

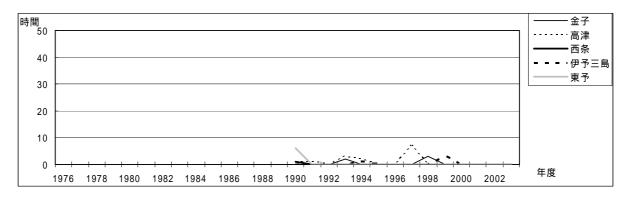


図 5g Ox 濃度ランク別 (20ppb 毎) の時間数の経年変化 (120ppb 以上)

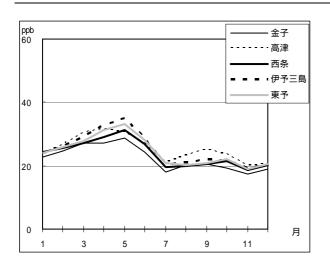


図 6 Ox 濃度の月別平均値

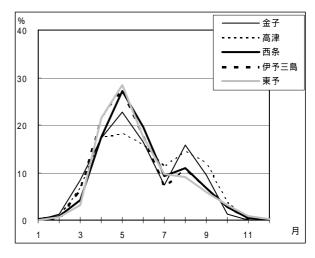


図7 Ox60ppb 以上の月別出現割合

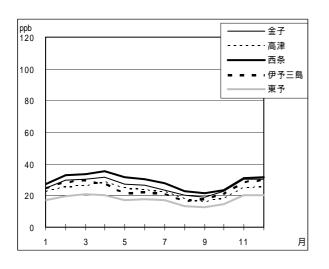


図8 NOx 濃度の月別平均値

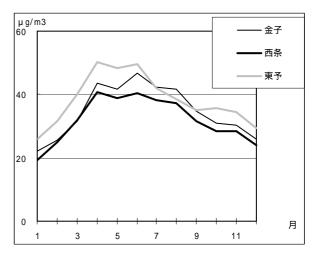


図9 SPM 濃度の月別平均値

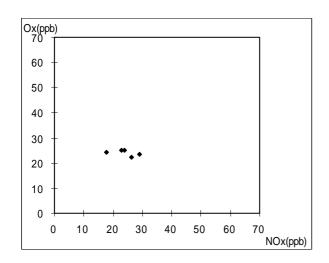


図 10 NOx 濃度とOx 濃度の関係

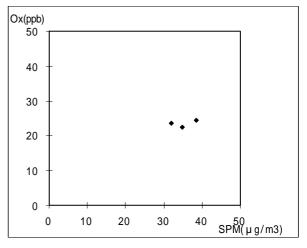


図 11 SPM 濃度と Ox 濃度の関係