The Sixth Tripartite Presidents Meeting among NIER, CRAES and NIES

November 25~27, 2009

National Institute of Environmental Research

> Chinese Research Academy of Environmental Sciences

> > National Institute for Environmental Studies

National Institute of Environmental Research Republic of Korea

TPM6 Joint Communiqué ······iii
TPM6 Program ······ vi
General Meeting
Session 1 : Opening Remarks by Presidents 1
1-1 Opening address by President of NIER, Korea
1-2 Keynote Speech (CRAES President) 7
1-3 Keynote Speech (NIES President) 11
Session 2 : Overview of recent achievement and future research plan 23
(chaired by CRAES President)
2-1 Achievement and research activities since TPM5 in CRAES, China
- Director, Yun ZHOU, CRAES, China
2-2 Research activities at NIES: Progress since last meeting
- Executive Director, Yoshifumi YASUOKA, NIES, Japan
2-3 Recent Achievements & Future Strategy of Environmental Research in NIER
- Director, Ho-Soek SONG, NIER, Korea
Session 3 : Review of TPM activities
(chaired by NIES President)
3-1 TPM Activities progress report
- Senior researcher, Hyun-Mi KIM, NIER, Korea
3-2 Progress of Sand Storm Project
- Director, Yunjiang YU, CRAES, China
3-3 Fresh water pollution prevention : Decentralized domestic wastewater treatment in rural
areas in China
- Senior researcher, Motoyuki MIZUOCHI, NIES, Japan
3-4 Transboundary air pollution
- Senior researcher, Im-Seok CHANG, NIER, Korea 3-5 Hazardous materials contamination, such as EDCs and POPs
- Director, Kyung-Hee CHOI, NIER, Korea
3-6 Air pollution, a regional challenge for Northeast Asia
- Director, Fan MENG, CRAES, China
Session 4 : Collaboration in the Future
(chaired by NIES President)
4-1 Proposal of New cooperative project
- Risk assessment and safety guideline on recycled products
- Senior researcher, Dong-Jin LEE, NIER, Korea

Workshop : Realization of Low Carbon Society through Climate Change Adaptation
Opening Remarks by President of NIER 233
Session 1 : Introduction for Climate Change-Prediction and Impact Assessment 235 (Moderator : Dr. You-Deug HONG, NIER, Korea)
 1-1 A new version of the atmosphere ocean coupled Global Climate Model(GCM) 'MIROC' for climate change simulation 237 - Dr. Tomoo OGURA, NIES, Japan
 1-2 Climate change: its impacts on hydrology, Fresh water quality and stream ecology 249 - Dr. Kyung-Hyun KIM, NIER, Korea 1.2 Impact Assessment of alimate change on forest storme sectors in Northern Chine
 1-3 Impact Assessment of climate change on forest-steppe ecotone in Northern China
Session 2 : Global Climate Change Monitoring, Adaptation and Mitigation 285 (Moderator : Dr. Fan MENG, CRAES, China)
 2-1 Industrial pollution reduction and green technologies
 2-2 Observation of global carbon distribution by GOSAT and its role in Climate change research
2-3 Climate change: its impacts and adaptation
Session 3 : Toward the Low Carbon Society (LCS)
3-1 A voyage towards a low carbon society of Korea
 3-2 Establishment of indicator system and scenarios of low carbon economy
 3-3 Introduction of climate policy assessment and 2050 Japan and Asia low carbon society studies
Closing Remarks by President of CRAES, Wei MENG 405
Closing Remarks by President of NIES, Shinichiro OHGAKI 407
Appendices 408 List of Participants

– ii –

The Sixth Tripartite Presidents Meeting among NIES, NIER and CRAES

ŝ,

Joint Communiqué

At the invitation of President Sueng-Joon YOON of the National Institute of Environmental Research (NIER) of Korea, President Wei MENG of the Chinese Research Academy of Environmental Sciences (CRAES) and President Shinichiro OHGAKI of the National Institute for Environmental Studies (NIES) of Japan visited Seoul, Korea, and attended the Sixth Tripartite Presidents Meeting (TPM6) from November 25 to 27, 2009. The meeting of the presidents was followed by its parallel workshop, the "International Workshop on Realization of Low Carbon Society through Climate Change Adaptation".

In their opening remarks, the presidents noted the friendly relations among NIER, CRAES and NIES in the area of environmental science and expressed their appreciation for the ongoing collaboration and cooperation activities among the three institutes. President YOON reviewed the current priority research areas of the TPM and expressed the necessity for the three institutes to pool their efforts and wisdom in search of concrete answers to environmental challenges through cooperative research to raise awareness of the problems in the region.

President MENG re-emphasized the principle of TPM: "Friendship, Cooperation, Communication and Win-win". He also stated the achievements made in environmental protection by the three institutes through TPM mechanism and further expressed CRAES's strong interest in working with NIER and NIES in the national key Special Program on Water Pollution Prevention and Control.

President OHGAKI acknowledged the close geographic proximity of the three countries and reaffirmed the importance of considering environmental issues in conjunction with each other in order to achieve sustainable development. He also emphasized that a healthy environment cannot be achieved without the research cooperation which is possible under the TPM framework.

The three presidents exchanged information on the recent developments in each institute and shared the view of the global challenges we are facing. They agreed to strengthen cooperation to address the issues including climate change, realization of low carbon society, resource recycling and waste management.

Furthermore, the three institutes reviewed the progress of their activities in the priority research areas. The presidents expressed satisfaction with the steady development made in the collaboration on "Transboundary Air Pollution" and "Dust and Sand Storm" (DSS). Fresh water pollution prevention study has been carried out with Japan-China Water Environment Partnership and NIES welcomed the participation of NIER and CRAES to the partnership. NIER invited NIES and CRAES to attend the "POPs Forum" to be held in December 2009 in Qingdao, China.

NIER proposed a new cooperation project on Risk Assessment and Safety Guideline on Recycled Product. CRAES and NIES agreed on this proposal and emphasized that experts in this field from the three institutes should further discuss the implementation in detail at the earliest opportunity.

The three institutes acknowledged the importance of the exchange of experts for enhancing research collaboration and sharing information on environmental research in East Asia.

President Wei MENG offered to host the seventh meeting of TPM (TPM7) in China. He suggested that the timing of the Working Level Meeting would be in April or May, 2010 and TPM7 would be held in Qingdao, Shandong Province in late September, 2010. He proposed solid waste management as the topic of the parallel workshop at TPM7. The three presidents agreed to open the workshop to environment related experts from universities and research institutes from the three countries, as well as accepting the participation of Mongolia and India as observers of TPM7. CRAES suggested that the three institutes jointly organize a side event at the COP10 of CBD in October 2010 in Japan. NIES will approach the Ministry of the Environment, Japan, to discuss the possibility of this proposal.

The presidents expressed their satisfaction with the successful outcomes of the meeting. President Wei MENG and President Shinichiro OHGAKI extended their sincere gratitude to President Seung-Joon YOON for his warm hospitality and leadership of the TPM6.

November 27, 2009 in Seoul, Korea

Seung-Joon YOON President, National Institute of Environmental Research, Korea

Wei MENG

President, Chinese Research Academy of Environmental Sciences, China

Shinichiro OHGAKI

President, National Institute for Environmental Studies, Japan

TPM6 Program

Wed Nov 25	Aunime of Turcherer Turkerer effected Africant
11:50~15:35	Arrive at Incheon International Airport
16:30~18:00	Working Level Meeting delegation (Charlotte Hall, the 36 th floor of Lotte Hotel)
18:30	Official Dinner hosted by NIER President (Charlotte Hall, the 36 th floor of Lotte Hotel)
<u>Thurs. Nov. 26</u> 09:00~09:20	General Meeting (Onyx Hall, the 2nd floor of Lotte Hotel) Session 1 : Opening Remarks by Presidents
09:20~10:40	Session 2 : Overview of recent achievement and future research plan
	(chaired by CRAES President)
10:40~11:00	Coffee Break
11:00~12:00	Session 3 : Review of TPM activities (chaired by NIES President)
12:10~14:00	Lunch (SamcheongGak, Korean restaurant)
14:00~15:00	Session 3 (Continued)
15:00~15:20	Coffee Break
15:20~17:00	Session 4: Collaboration in the Future (chaired by NIES President)
17:00	Meeting adjourned
18:30	Official Dinner hosted by CRAES president (Charlotte Hall, the 36^{th} floor of Lotte Hotel)
<u>Fri. Nov. 27</u>	Workshop : Realization of Low Carbon Society through Climate Change Adaptation
09:00~09:10	(Charlotte Hall, the 36th floor of Lotte Hotel) Opening Remarks by President of NIER
09:10~10:25	Session 1 : Introduction for Climate Change-Prediction and Impact Assessment
	(Moderator:Dr. You-Deug HONG, NIER, Korea)
10:25~10:45	Coffee Break
10:45~12:00	Session 2 : Global Climate Change Monitoring, Adaptation and Mitigation
	(Moderator : Dr. Fan MENG, CRAES, China)
12:00~13:30	Lunch (Yongsusan, Korean restaurantl)
13:30~14:45	Session 3 : Toward the Low Carbon Society (LCS)
	(Moderator : Dr. Makoto SAITO, NIES, Japan)
14:45~15:05	Closing Remarks by Presidents of CRAES and NIES
15:05~15:25	Commemorative Photograph
15:25	Workshop adjourned
15:25~15:45	Coffee Break
16:20~17:00	Signing ceremony of the 6th TPM Joint Communiqué
	(by three presidents)
18:30	Official Dinner hosted by NIES president (outside Lotte Hotel)
<u>Sat. Nov. 28</u>	Leave at Incheon International Airport

General Meeting

	(Onyx Hall, the 2 nd floor of Lotte Hotel) Session 1: Opening Remarks by Presidents
	 1-1 Opening address by President of NIER Korea 1-2 Keynote Speech (CRAES President) 1-3 Keynote Speech (NIES President)
09:20~10:40	Session 2: Overview of recent achievement and future research plan (chaired by CRAES President) (each institute)
	 2-1 Achievement and research activities since TPM5 in CRAES, China Director, Yun ZHOU, CRAES, China 2-2 Research activities at NIES: Progress since last meeting Executive Director, Yoshifumi YASUOKA, NIES, Japan 2-3 Recent Achievements & Future Strategy of Environmental Research in NIER Director, Ho-Seok SONG, NIER, Korea
10:40~11:00	Coffee Break
11:00~12:00	Session 3: Review of TPM activities (chaired by NIES President)
	 3-1 TPM Activities progress report Senior researcher, Hyun-Mi KIM, NIER, Korea 3-2 Progress of Sand Storm Project Director, Yunjiang YU, CRAES, China 3-3 Fresh water pollution prevention : Decentralized domestic wastewater treatment in rural areas in China Senior researcher, Motoyuki MIZUOCHI, NIES, Japan
12:00~14:00	Lunch (SamcheongGak, Korean restaurant)
14:00~15:00	Session3 (Continued) (chaired by NIER President)
	 3-4 Transboundary air pollution Senior researcher, Im-Seok CHANG, NIER, Korea 3-5 Hazardous materials contamination, such as EDCs and POPs Director, Kyung-Hee CHOI, NIER, Korea 3-6 Air pollution, a regional challenge for Northeast Asia Director, Fan MENG, CRAES, China
15:00~15:20	Coffee Break
15:20~17:00	Session 4 : Collaboration in the Future (chaired by NIER President)
	 4-1 Proposal of New cooperative project Risk assessment and safety guideline on recycled products Senior researcher, Dong-Jin LEE, NIER, Korea 4-2 Exchange of experts 4-3 Revitalization of agreements 4-4 Next TPM7 other suggestions (if any)
17:00	Meeting adjourned
18:30	Official Dinner hosted by CRAES president (Charlotte Hall, the 36 th floor of Lotte Hotel)

Workshop : Realization of Low Carbon Society through Climate Change Adaptation

Fri. Nov. 27 (Charlotte Hall, the 36th floor of Lotte Hotel)

09:00~9:10 Opening Remarks by President of NIER

- Session 1 : Introduction for Climate Change-Prediction and Impact Assessment (Moderator : Dr. You-Deug HONG, NIER, Korea)
 - 1-1 A new version of the atmosphere ocean coupled Global Climate Model(GCM) 'MIROC' for climate change simulation
 - Dr. Tomoo OGURA, NIES, Japan
 - 1-2 Climate change: its impacts on hydrology, Fresh water quality and stream ecology
 - Dr. Kyung-Hyun KIM, NIER, Korea
 - 1-3 Impact Assessment of climate change on forest-steppe ecotone in Northern China
 - Dr. Shihai LU, CRAES, China
- 10:25~10:45 Coffee Break

 $09:10 \sim 10:25$

- 10:45~12:00 Session 2 : Global Climate Change Monitoring, Adaptation and Mitigation (Moderator: Dr. Fan MENG, CRAES, China)
 - 2-1 Industrial pollution reduction and green technologies
 - Dr. Yanping LI, CRAES, China
 - 2-2 Observation of global carbon distribution by GOSAT and its role in Climate change research
 - Dr. Yoshifumi YASUOKA, NIES, Japan
 - 2-3 Climate change: its impacts and adaptation
 - Dr. Chang-Geun SONG, NIER, Korea
- 12:00~13:30 Lunch (Yongsusan, Korean restaurantl)
- 13:30~14:45 Session 3 : Toward the Low Carbon Society (LCS)

(Moderator : Mr. Makoto SAITO, NIES, Japan)

- 3-1 A voyage towards a low carbon society of Korea
 - Dr. You-Deug HONG, NIER, KOREA
- $3{-}2$ Establishment of indicator system and scenarios of low carbon economy Dr. Jiafeng FU, CRAES, China
- 3-3 Introduction of climate policy assessment and 2050 Japan and Asia low carbon society studies
 - Dr. Tatsuya HANAOKA, NIES, Japan
- $14{:}45{\sim}15{:}05$ $\,$ Closing Remarks by Presidents of CRAES and NIES $\,$
- 15:05~15:25 Commemorative Photograph
- 15:25 Workshop adjourned
- 15:25~15:45 Coffee Break
- 16:20~17:00 Signing ceremony of the 6th TPM Joint Communiqu (by three presidents)
- 18:30 Official Dinner hosted by NIES president (outside Lotte Hotel)

1-1 Opening address by President of NIER, Korea

- President. Seung-Joon YOON, National Institute of Environmental Research

1-2 Keynote Speech (CRAES President)

- President. Wei MENG, Chinese Research Academyof Environmental Sciences

1-3 Keynote Speech (NIES President)

- President. Shinichiro OHGAKI, National Institute for Environmental Studies

1-1 Opening address by President of NIER Korea

- President. Seung-Joon YOON, National Institute of Environmental Research

General Meeting of TPM6 Opening Address

> President. Seung-Joon YOON National Institute of Environmental Research

President Wei MENG of the Chinese Research Academy of Environmental Sciences (CRAES), President Ryutaro OHTSUKA of the Japanese National Institute for Environmental Studies (NIES) and all colleagues from CRAES, NIES and NIER.

It is my great honor to host the sixth Tripartite Presidents Meeting in Seoul, the capital city of Korea. I would like to extend my warmest welcome to all of you for coming all the way to discuss environmental issues in Northeast Asia.

Although this is my first participation in TPM since I took office as the President of the National Institute of Environmental Research last September, I have heard much of its significance and fruitful results from many people including my predecessor, Yun-Hwa KO. That helped boost my motivation to be enthusiastic as well as responsible in preparing this meeting.

Global communities are keeping an eye on the Northeast Asian region, where a quarter of the world's population lives and remarkable economic growth has been achieved during the last few decades. However, on the other hand, the rapid economic development has brought with it various environmental challenges such as water and air pollution. These problems would affect not only specific countries but also the Northeast Asian region, and even the entire world.

As you are aware, the 11th Tripartite Environment Ministers Meeting last June identified that climate change, dust and sandstorm, and toxic chemical management are the major environmental concerns in Northeast Asia. In this regard, it has significant meaning to hold the TPM with the members of CRAES, NIES and NIER. Today, we gathered here to pool our efforts and wisdom in search of concrete answers to environmental challenges through cooperative research and thereby raise awareness of the problems in the region.

Since we reached an agreement to hold the TPM on an annual basis at the first gathering in 2004, we have successfully held this event for the past five years. We have performed several projects with strong cooperation, such as water quality

improvement, long-range transboundary air pollutants, dust and sandstorm. But the project on chemical management has been cooperated with NIES and NIER, therefore, from now on, participation of CRAES would be encouraged. Based on the agreement of TPM, short-term training program has been launched among researchers from the three countries. Based on this agreement, NIER has performed three sessions of expert training program for researchers from China, with participation of an environmental expert from NIES as a lecturer. Last year, we shared opinions on how to develop our cooperation scheme and identified a couple of areas for further collaborative works including research programs on solid waste and climate change.

With our concerted efforts, the Tripartite Presidents Meeting among China, Japan and Korea has been emerging as an arena in which each institute shares experiences and expertise and discusses ways to achieve substantive outcomes.

Through the discussions and the joint workshop, which are scheduled to be held here today and tomorrow, we will seek constructive ways to promote joint research on pressing environmental issues and enhance research capacity and knowledge. As far as I know, the TPM has been playing a key role in initiating research cooperation activities among the three countries. This time in particular, I hope we will be able to reach an agreement on new collaborative research plan in relation to resource circulation, which was discussed at the last working level meeting in May.

In closing, once again, I would like to express my deepest gratitude to all the delegates from CRAES and NIES for coming to participate in this meeting. I firmly believe that TPM6 will become the cornerstone for the improvement of the environmental conditions in Northeast Asia, and moreover, the whole world.

Thank you.

1-2 Keynote Speech (CRAES President)

- President. Wei MENG, Chinese Research Academyof Environmental Sciences

General Meeting of TPM6 Keynote Speech

> President. Wei MENG Chinese Research Academyof Environmental Sciences

Distinguished NIER president Prof. YOON Seung-Joon, NIES president Prof. OHGAKI Shinichiro, respected friends:

Good morning!

First of all, I'd like to congratulate, on behalf of the delegation and all the other members of CRAES, on the opening of TPM6 in Seoul, the capital of Korea.

Time flies as swiftly as an arrow, and years elapse as quickly as a shuttle. It is now already the sixth year, since the establishment of Tripartite President Meeting (TPM) mechanism under the Tripartite Environment Ministers Meetings (TEMM) Mechanism among China, Japan and Korea. During these six years, presidents of NIER, CRAES, and NIES met every year in TPM meetings, while our excellent experts joined in the parallel workshop to conduct academic discussions about hot environmental issues in fields of common interest. We are delighted to see that under our joint efforts, the cooperation of environmental protection research among Korea, China and Japan has been promoted and improved through each TPM meeting.

As summer goes and winter comes, stars are changing their position. It is our great joy to know former presidents of NIER: Dr. Rhee Deok-Gil, Dr. YOON Seong-Kyu and Dr. KO Yun-Hwa, and former presidents of NIES: Dr. GOHSHI Yohichi and Dr. OHTSUKA Ryutaro through TPM mechanism. We were working collaboratively in the establishment of TPM mechanism, making joint efforts in improving the meeting while trying to advance detailed cooperation among our three sides. Today, like the refreshing air, new presidents of NIER and NIES join us in TPM6. I hope that together with Prof. YOON Seung-Joon and Prof. OHGAKI Shinichiro, TPM mechanism will be further improved in the future.

No matter how our members change and how the scale of our key research areas is enlarged, there is one essential TPM principle that remains the same, which is "Friendship, Communication, Cooperation and All-Win". Although Korea, China and Japan are all located in Northeast Asia, the national situation is quite different from each other, with varied environmental problems and challenges. However, the common goal, for which our three institutes carry out environmental research, makes us join together to expatiate mechanism of environmental pollution through scientific research and develop technologies for controlling pollution emission, transportation and transformation, combating key national and regional environmental problems and providing solid basis for and strong support to our Environmental Ministries and government in the formulation of relevant policies as well as the effective implementation and management. Through scientific research cooperation among NIER, CRAES and NIES in field of environmental protection, regional environmental safety of Northeast Asia would be enhanced and improved greatly.

The holding of TPM6 is very important for the startup and orientation of the third turn of TPM. Up till now, we have already gained understanding with each other in terms of environmental research and relevant scientific applications. We are working to promote the implementation of detailed cooperative projects, such as the sand storm project. As for the deepening of tripartite cooperation, we are jointly seeking for environmental cooperation in broader fields, trying to stretch out updated suggestions and ideas for cooperation meeting new demands of social development, and put them into practice.

In TPM4 of 2007, I proposed two cooperative projects, one of which is about climate change, the hot issue of global environment. As far as I know, though our three institutes have already participated in part of IPCC activities at different scales, the impact of climate change on regional environment should get more attention. Thus, at that time, I proposed that joint research on the evolvement of typical ecosystem should be carried out among our three institutes from the perspective of global climate change's impact on ecosystem and biodiversity. Today, we are very pleased to see that issues of climate change adaptation will be discussed in the parallel workshop of TPM6, which is at the right time just before Copenhagen 2009: United Nations Climate Change Conference. This fully presents our TPM mechanism's sticking to the principle of "Friendship, Communication, Cooperation and All-Win", while keeping pace with the times.

From the very beginning of December, 2006, when CRAES, NIES and NIER jointly organized and held the "TEMM8 Side Events of International Workshop on Regional Ecology and its Environmental Effect—Dust storm, its impacts and mitigation countermeasure" in Beijing, the development and cooperation of TPM mechanism has already gained recognition from each of our Environmental Ministry. Our tripartite collaboration is going on harmoniously and developing sustainably. I hope that new presidents of NIER and NIES would continue providing your understanding and support, so that under our joint efforts, we are able to advance the tripartite cooperation to a new prosperous stage. Currently, Chinese government is carrying out "National Special Programme of Water Pollution Control and Treatment". I hope that our three institutes would grasp this opportunity and enhance tripartite cooperation in water pollution control under the framework of this Special Water Programme.

Finally, I would like to wish a great success of TPM6 and the parallel workshop. Look forward to excellent presentations in our meeting and further cooperation among NIER, CRAES and NIES.

Thank you!

1-3 Keynote Speech (NIES President)

- President. Shinichiro OHGAKI, National Institute for Environmental Studies

General Meeting of TPM6 Keynote Speech

> President. Shinichiro OHGAKI National Institute for Environmental Studies

Ladies and Gentlemen, good morning, and on behalf of the delegation from NIES, firstly I would like to express my sincere thanks to the president of NIER, YOON Sueng-Joon, and his colleagues for making all the arrangements for this important meeting. I am delighted to attend the TPM meeting with President Wei MENG of CRAES and his colleagues, as the new president of NIES.

I would like to give a short power point presentation this morning. I will talk about one concept of environmental studies and I would also like togive a brief introduction to our research institute.

Last week I visited the Three Gorges Project in mainland China and enjoyed collaboration with the Yangtze River Committee. I found this very interesting model of the Three Gorges Project in the visitor center at the site. As you can see, the dam is located here at the center of 500km radius and 1000km radius circles and Beijing is located almost 1000km from here. This is a photo of the visitor center of this project and this is the dam itself. However, unfortunately it was very foggy, so we could not see the whole dam clearly in this photograph.

Following this trip and seeing this model, I made the following map. We can see our neighborhood, or our sustainable development area, with 1000km radius circles from Tokyo, from Seoul, and from Beijing. This image shows how close geographically our countries are to each other; there is only 1000km between each of us, and all our environment is connected. Therefore, we must consider our sustainable development in conjunction with each other in these areas.

We started using the expression "sustainable development" in 1992 at the United Nations Conference on Environment and Development in Rio de Janeiro. Another similar phrase is "sustainable human development". In reference to these terms, I often think about what is the meaning of "sustainable"? I think it has a very vague meaning. If we consider what is NOT sustainable, this means "to come to an end". What does not come to an end? That is an important point because nearly everything comes to an end, for example movies, books, symposiums, dynasties, or

empires. We want to have sustainable development; therefore we want something to NOT come to an end. So, what do we NOT want to come to an end? For example, beautiful landscape, historical heritage, fish ecological species, or traditional cultures, etc. These are all things which are related to a healthy environment.

A healthy environment cannot be achieved by one country. Therefore, we must engage in research collaboration, especially with our neighborhood countries. The NIES charter says "research that fosters and protects a healthy environment for present and future generations". Maybe we should also extend this to include regional areas, international areas and the world.

Now I would like to move on to the introduction of my institute. Maybe President MENG Wei, you know about NIES very well by now. This is a bird's eye view of NIES. This slide shows our observation and monitoring sites around Japan; Cape Ochi-Ishi where you visited during the last TPM. This shows the brief history of the institute. We started from 1974 as the National Institute for Environmental Studies. The English name has always been the same, but the Japanese name changed in 1990. In 2001 NIES became an incorporated administrative agency and the governance system changed. Now we are now here, in the second five-year plan 2006-2010, and this is the research framework for this second five-year plan.

These are our 4 main priority programs: climate change and sustainable material cycles, environmental risk and Asian environment, and this is the system of our divisions. This shows our human resources. We have 254 permanent staff who are almost all researchers. We also have visiting researchers or contract researchers numbering roughly 600. This shows our budget. The left-hand side shows the revenues and the right-hand side shows the expenditures which are roughly 14 billion yen. Finally this shows some of our recent activities in the dissemination of our research findings to the public of all age groups.

Thank you very much. Kamsamnida

Sustainable Development

United Nations Conference on Environment and Development, Rio de Janeiro, June 1992

Sustainable Human Development

Amartya SEN Prof., Welfare Economics Nobel Laureate in Economic Science, 1998 Doctor, honoris causa (名誉博士), The University of Tokyo, 2002

What is Sustainable Human Development? Development can be seen ... as a process of expanding the real freedoms that people enjoy. Focusing on human freedoms [or capabilities] contrasts with the narrower views of development, such as identifying development with the growth of gross national product, or with the rise in personal incomes, or with industrialization, or with technological advance, or with social modernization. --Amartya Sen, Development as Freedom What is Capability? Economic, political, legal, and other social arrangements should be evaluated according to how they expand people's capabilities. People's capabilities are ····a diverse set of the things people value such as the ability to be nourished, to learn, to be at peace, to travel, to go about without shame, to be friends, to contemplate higher matters, to take action on causes that matter, to have meaningful work. (source : Web site of Human Development and Capability Association)

What is "sustainable" ? "Not sustainable" is "to come to the end".

Every thing comes to the end. ---- movie film, book, symposium, ,,,dynasty, empire, civilization(?) What does not come to the end?

What do we want not to come to the end?

-----beautiful landscape, historical heritage, ,,, fish species, ,, traditional culture, ,,, enough food ,, water supply(?), healthy water environment(?), ,,,,,,

	March 1974		I Institute for Environmental Studies (NIES)
		国业公告	研究所 established
	July 1990		turing of NIES, 国立環境研究所to include environmental research
anuary 200	the second s	of the Env	ironment 環境省
	April 2001		as an incorporated administrative agency 「政法人
	Ap	oril 2001	First five-year plan (2001-2005) commenced
	Ap	ril 2006	Second five-year plan (2006-2010) commence

Overview of recent achievement and future research plan

(chaired by CRAES President)

- 2-1 Achievement and research activities since TPM5 in CRAES, China - Director, Yun ZHOU, CRAES, China
- 2-2 Research activities at NIES: Progress since last meeting
 - Executive Director, Yoshifumi YASUOKA, NIES, Japan
- 2-3 Achievement and research activities in NIER
 - Director, Ho-Seok SONG, NIER, Korea

2-1 Achievement and research activities since TPM5 in CRAES, China

- Director, Yun ZHOU, CRAES, China

MEP Announcement No. 14, 2008	Technical Manual on Centralized Drinking Water Source Conservation in Quake-hit Area (Temporary)
	Technical Scheme on Emergency Response to Drinking Water Safety in Quake-hit Area (Temporary)
	Monitoring Technology Guideline on Surface Water Quality and Centralized Drinking Water Source (Temporary)
MEP Announcement No. 15, 2008	Guideline on Relic Clean-up and Waste Management after the Earthquake (Trial)
	Environmental Protection Technical Manual on Transitional Resettlement Area in Quake-hit Area (Temporary)
MEP Announcement No. 23, 2008	Environmental Protection Technical Manual on Re- production of Industries and Enterprises in Quake- hit Area (Temporary)

2-2 Research activities at NIES: Progress since last meeting

- Executive Director, Yoshifumi YASUOKA, NIES, Japan

MoE, JAXA and NIES

January, 23, 2009

PJ2: Greenhouse gas observation from space (GOSAT; launched on Jan. 23, 2009) Japanese Satellite GOSAT **GHG Observations** Altitude **Estimation of Global** 666 km **Carbon Flux Distribution** IFOV: 10 km Ø To apply the observational data from GOSAT and ground-based data to an inverse model to give precise global before 199 after 1662 distribution of carbon sources and sinks Ground Monitoring Stations

Toward Sustainable Earth

Any one single country may not cover the whole issues over global atmosphere, ocean, land and human systems.

We need collaboration!

2-3 Recent Achievements & Future Strategy of Environmental Research in NIER

- Director, Ho-Seok SONG, NIER, Korea

Introduction	
Research in 2009	
Strategy for Future Res	earch
	Research in 2009

Future Resear	ch Projects
Background a	and Significance
- Support gove Growth strat	ernment policy-making on the Low-carbon and Green egy
- Protect huma	an health and preserve ecological soundness
	ctive measures for sudden environmental changes imate change
NIER set 6 ke	ey research areas
- 70 research a	activities under 19 subjects

-	
5	Key research areas
2	Research on climate change adaptation to support realization of a low carbon society
2	Research on environmental health based on environmental risk
2	Research on creating and restoring an ecosystem in which humanity and nature coexist in harmony
2	Research on improving healthy water environment
2	Research on creating a resource-circulating society to achieve the Green Growth
2	Research on scientific foundation of air quality management to improve living environment

from solid fuels
energy recovery
ardous waste
ment and

Review of TPM activities

(chaired by NIES President)

3-1 TPM Activities progress report

- Senior researcher, Hyun-Mi KIM, NIER, Korea

3-2. Progress of Sand Storm Project

- Director, Yunjiang YU, CRAES, China
- 3-3. Fresh water pollution prevention : Decentralized domestic wastewater treatment in rural areas in China

- Senior researcher, Motoyuki MIZUOCHI, NIES, Japan

3-4 Transboundary air pollution

- Senior researcher, Im-Seok CHANG, NIER, Korea

3-5 Hazardous materials contamination, such as EDCs and POPs

- Director, Kyung hee-CHOI, NIER, Korea

3-6 Air pollution, a regional challenge for Northeast Asia

- Director, Fan MENG, CRAES, China

3-1 TPM Activities progress report

- Senior researcher, Hyun-Mi KIM, NIER, Korea

Õ

÷

i

3-2 Progress of Sand Storm Project

- Director, Yunjiang YU, CRAES, China

ŝ

Monitor the deposition character and velocity of dust sand aerosol during transportation in different regions, simulating and studying deposition velocity of dust sand aerosol of different sizes under different meteorological conditions.

Transformation characterization of dust sand aerosol during transportation

Study the transformation and metamorphose characterization and mechanism of dust sand aerosol during transportation, through comparison and analysis of aerosol's physical chemical characterization in countries and regions (Korea and Japan) at leeward direction of sandstorm source area, sandstorm occurring region and sandstorm.

5

6

2. Establishment sandstorms forecast and movement model

Based on various existing models, for example 'DSS Forecasting Model Based on SVM' and 'DSS Model Based on GA-neural Network' etc, establishing more accurate early forecast and transport model and verifying them by the use of monitoring data.

The forecast model will provide both short-term (early warning) and long-term (seasonal) predictions. Longterm forecasting will depend heavily on data derived from ground surface monitoring and on verification of prediction model output.

3. Sandstorm's impact on regional ecosystem

Sandstorm's impact on temporal and spatial variation of land utilization type

By analysis the relationship between dust storm and surface (land cover and vegetables coverage degree) in Northern China, it is revealed what relationship the land cover and vegetable coverage degree have with the form of dust storm and change.

Sandstorm's impact on land cover and vegetables coverage degree

It is of significance both in theory and practice to reveal the interaction between these two phenomena. Based on mass data of temporal and spatial variation of land utilization type from investigation, a study will be made of sand-dust storms on land desertification.

Study and assessment on different control models

Appling the engineering measures, the vegetation restoration results and sand preventing effects will be studied by the different influencing factors including vegetation structure, seed disposal technology, planting time and pattern.

5. Sandstorm's Impact on Human Health

Epidemiological survey

Select survey locales according to environmental monitoring results and relevant data to study the harm of dust sand aerosol on respiratory system, cardiovascular system and immune system etc. Corresponding database should be established on the basis of study on groups of all ages especially the sensitive groups (the old and the children), with appropriate environmental epidemiological questionnaire designed through expert demonstration. After adjustment of social economical status and hazard recognition degree, odds ratio of each effect should be calculated using statistical methods, to find out whether there is apparent difference in each undesirable effect's occurrence. Then the potential hazardous factors would be analyzed with environmental monitoring data involved.

10

According to data and results of epidemiology and field investigation, physiological and biochemical experiments on animal should be conducted with indoor modeling experiments involved. Then the pathogenic mechanism would be studied further from the aspects of numerator level and gene level to probe into the imperiling way and feature of effect of dust sand aerosol on organisms.

Re	AC	-						-				-
		52	ire	ch	S	C	he	d		e (200	8)
Time	Timeline (month)									Research		
Details	8	9	10	11	12	1	2	3	4	5	budget (KRW)	Weight (%)
Collect basic information on restoration projects	-											20
Make a check-up list	-	_										20
Joint field survey			-									20
Coffect source data	-		-		-	_			_	_		10
Improve assessment methods for ecosystem restoration					_	_			_	_		30
Rate of progress	15	5	20	5	5	5	5	10	20	10		100
Date requested for the interim report							Januar	y 15.3	2009			

2) Desertification Monitoring in China

A National Geography Information Management System for Desertification and Sandification was established.

Scope of monitoring:

Arid, semi-arid and sub-humid area, distributed generally in 10 provinces belonging to North and West China, with 270 counties involved. Key monitoring area was farm-pastoral transitional zone in North China.

Contents of monitoring :

- The status of desertification land distribution
- macroscopic data in arid areas for the state, provinces
- •Countermeasures and suggestions for desertification combating are put forward based on analysis.

NO.	Project name	Purpose	Sponsored party and agency	Implement organization	Location	Period	Budget	Projetare
-1	The Natural Forent Protection Project	Restoration of natural form treasures, and prevention and control, controlling soil and with losses.	Sate Foreity Administration P.R. China	Various counties Local government	Inner Mongola, Min, Heilougiang, Hainan, Xinjiang autonomous regiona and municipalities in 17 of 734 counties, 167 forestry lucean.	2000-2010	962×10 ⁴ CNT	117,000,000 5
2	The Three-North Shelterbelt Project	Establish large-scale protection forest system in our country and storm and soil erosion serices area of Three-Norths	Stats Form try Administration P.R. China	Various courries Local government	north sut, northeast and north China, 13 provinces 551 counties	1978-2050	1200×104 CNY	409.500 ha
3	The project of Convenion from Coopland to Forest and Graniland (PCCFG)	Provention and control soil erosion and description and improve the ecological environment	State Forestry Administration P.R. China	Various courties Local government	In addition to Shanghai, Jiangue, Zhijiang, Fujian, Shandong, Guangdong outside of the 25 provinces, autonomous regions and the Ninjiang Production and Construction Come.	1999-2010	1500×10 ⁸ CNY	348,333 ka

Joint ecological forestry project between China and Korea in Kubuqi desert ,Inner Mongolia.

		Desertification among I	Project for Protection Korea, China, and Japan	n of Desertification			
The nam	e of project.	Reging-Thagan Sandatons Source Control Project Region		Mu Us Sandland—Wushen Banner National Development and Reform Commission			
Period		2000.10	Organization				
The purpose of project		Improve ecological environment and sandstorm source control of Beijing-Tiamin area					
The national of financial funding		Chinese assessment	The organization of financial support				
The country annual rainfall/period		250-440mm,6- 9month,85%	The wind velocity/ direction	3.5-4.5m/s. NW			
The area of afforestation			The number of trees for afforestation				
Survival rate		85%	The date of planting	04/2001:04/2002			
Layout of the area		Have	Size of hole (diameter & depth)	60×80cm			
The equipments		Irrigation					
The direction			Slope				
the point of GPS		E 108°17'3	N 37"38'54"39"23'50"				
The width between Width of row		5~8m	Width of column	10m			

		r Desertification among	Korea, China, and Japan	on of Desertification			
The name	e of project	Beijing-Tianjin Sandstorm Source Control Project	Region	Kubuqi Desert—Dalate Banner			
Period		2000.10	Organization	National Development and Reform Commission			
The purpose of project		Improve ecological environment and sandstorm source control of Beijing-Tiaryin area					
The national of financial funding		Chinese povernment	The organization of financial support				
The country annual rainfall/period		200mm, 6- 9month,80%	The wind velocity/ direction	3.5-4.0m/s. NW			
The area of afforestation			The number of trees for afforestation	1			
Survival rate		85%	The date of planting	04/2001:04/2002			
Layout of the area		Have	Size of hole (diameter & depth)	50×80cm			
The equipments		Irrigation					
The direction			Slope				
the point of GPS		E109°100	N 40°00'-10°30'				
The width between row		5~8m Width of column		10m			
The width between tree	Special						

Biological stabilizing sands techniques

Sands enclosure to restore natural vegetation: to

fence in vegetation destroyed land in arid and semi-arid areas so as to prevent human activities and animal use, and gradually restore natural vegetation.

fully enclosure, half- enclosure and alternate enclosure. Fully enclosure: to forbid all the human activities destroying plants growth. Alternate enclosure: implemented around the divided zones in

turn. Sands enclosure is proved to be low cost and high efficiency.

Enclosure--fenced grassland

Biological barrier to stabilize sands 43

3-3 Fresh water pollution prevention : Decentralized domestic wastewater treatment in rural areas in China

.

- Senior researcher, Motoyuki MIZUOCHI, NIES, Japan

The cooperation between three countries in the field of decentralized domestic wastewater treatment in the past

JICA Technical Support Type Project "Development of water quality renovation system in Korea" South Korea 1993-1999

"Restoration of water environment at the Lake Taihu, China" P. R. China 2001-2005

Ministry of the Environment Technology Transfer Project "Water quality renovation for the Lake Baifu and Honfeng" Guiyang, P. R. China 2000-2001

Taizhou city, Jiangsu province

Chongqing city

Taizhou city, Jiangsu province

Situation of discharging of domestic wastewater

N	Project Sites	Population	Influent	Capacity (m3/day)
1	Maguan town (Chongqing city)	6,000	Night soil Gray water	500
2	Baiyang town (Chongqing city)	6,000	Night soil Gray water	600
3	Zhaojia new village (Jiangsu province)	750	Night soil Gray water	150
4	Dongbei village (Jiangsu province)	200	Night soil Gray water	40
5	Shuixigou town (Xinjiang autonomous region)	4,200	Night soil Gray water Rain water	300
6	Xiangyuanxi village (Yunnan province)	2,600	Night soil Gray water	200

No	Project Sites	Operational Cost (CNY/m3)	Required Effluent Quality*		
	Maguan town (Chongqing city)	0.2	2		
2	Baiyang town (Chongqing city)	0.25-0.3			
3	Zhaojia new village (Jiangsu province)	0.5-0.6	1B		
4	Dongbei village (Jiangsu province)	0.5-0.6			
5	Shuixigou town (Xinjiang autonomous region)	0.5-0.6	2		
6	Xiangyuanxi village (Yunnan province)	0.4	1A		

No	Project Sites	Treatment Method	Carrier material	Aeration time (h)
1	Maguan town (Chongqing city)	Active sludge + Artificial Wetland		+
2	Baiyang town (Chongqing city)	Contact Aeration+ Artificial Wetland	Ball shaped plastic carrier	4
3	Zhaojia new village (Jiangsu province)	Contact Aeration	Gravel	16-20
4	Dongbei village (Jiangsu province)	Contact Aeration	Gravel	16-21
5	Shuixigou town (Xinjiang autonomous region)	Contact Aeration	Ball shaped plastic carrier	8
6	Xiangyuanxi village (Yunnan province)	Contact Aeration+ Multi-soil layer	Ball shaped plastic carrier	4

	Effluent water quality standards for Taizhou									
	CODcr	BOD	SS	NH4-N	Fecal coli.					
	60 mg/L	20 mg/L	20 mg/L	15 mg/L	104 MPN/L					
	e taken. onstruction, n	naintenance,	and operati		well as the					
C	e taken.	naintenance,	and operati							
C	e taken. onstruction, n	naintenance, ludge must b	and operative kept low.	on costs as	well as the					
	e taken. onstruction, n oduction of sl	naintenance, ludge must b	and operative kept low.	on costs as	well as the					
-	e taken. onstruction, n oduction of sl	naintenance, ludge must b contact ae	and operative kept low.	on costs as stem was	well as the selected					
	e taken. onstruction, n oduction of sl A gravel c	naintenance, ludge must b contact ae ed as a dece	and operation e kept low.	on costs as stem was eatment faci	well as the selected					

3-4 Transboundary air pollution

į

- Senior researcher, Im-Seok CHANG, NIER, Korea

	Manager and an and the second s
Sep. 1995	Hosting a workshop on LTP in Seoul, Korea Launching a working group consisting of government officials and experts Establishing an interim secretariat of LTP Project at NIEF Korea
	Agreements of the 1st LTP Expert Meeting
July 1996	* Conduct a joint research of modeling and monitoring on LTP
July 1770	 Upgrade the interim secretariat to an official secretariat to support the Workin Group more efficiently
	* Adopt the operational principles of Working Group
	 Appoint Korea, China, and Japan as the member countries of the Working Group for LTP
No. of the second	The 2nd LTP Expert Meeting
Nov. 1997	Launch sub-working groups for modeling and monitoring
2000 ~ 2004	The 1 st stage joint study
2005 ~ 2007	The 2 nd stage joint study
2008 ~ present	The 3rd stage joint study

LTP Monitoring

>2 background monitoring sites per each country

>Intensive and long-term monitoring from 2000 up to now

Item	size	Interval (hr)	sampler	
	PM ₁₀ , PM _{2.5}	12 -	URG sampler	
Mass	0.056~18 m. 8 channel	48	MOUDI sampler	
	PM ₁₀ , PM _{2.5}	12 -	URG sampler	
Ionic species	0.056~18 m, 8 channel	48 -	MOUDI sampler	
gas (NH ₃ , HNO ₃)		12	URG sampler	
Metal	PM10. PM25	12	URG sampler	
OC, EC	PM ₂₅	12	URG sampler	
Number conc.	0.25~32 m	5	OPC	
VOCs (TO-14A)		24	Mini sampler	
Gas(SO2, 03, NOx, CO)		1	TEI analyzer	

	LIPI	Modeling			
	China	Japan	Korea		
Model system	Models-3 / CMAQ o coordinate 14 layers, 70×66 grids, 60km resolution (Byun and Ching, 1999) 20~50N, 100~150E	RAQM (Regional Air quality Model) terrain following coordinate 12 layers, 110×80 grids, 60km resolution (An et al., 2002) 20-50N, 100~150E	CADM (Comprehensive Acid Deposition Mod terrain following coordinates 12 layers, 110×80 grids, 60km resolution (Lee et al., 1998)		
			20~50N, 100~150E		
Meteorological Model	MM5 34 layers with FDDA using NCEP reanalysis	MM5 125×95 (45km), 23 layers, FDDA using NCEP FNL reanalysis	CSU-RAMS 110×80, 29 vertical layer FDDA using NCEP FNL reanalysis		
Chemical Mechanism	RADM Chemistry	CBM-IV mechanism	RADM Chemistry		
Cloud Model Physical option	Diagnostic cloud model in RADM Simple explicit moisture scheme Grell cumulus schemes, MRF	Cloud model in MM5 Betts-Miller cumulus scheme, MRF RRTM	Cloud model in CSU-RAMS Anthes-Kuo cumulus scheme, MRF		
Emission	SO ₂ : NOx, VOC, NH ₃ , CO, PM ₁₀ biogenic VOC provided by LTP for the base year of 1998 (1 ^a ×1 ^a resolution)	Same as China	Same as China		
Dry deposition	Wesely's parameterization (Wesely, 1989)	Modified Wesely's parameterization (Walmsley & Wesely, 1996)	Dry deposition module in RADM (Lee et al, 1998)		
Wet deposition	RADM Module (Chang et al, 1987)	RADM Module (Chang et al, 1987)	RADM Module (Chang et al, 1987)		
Land use type	EPA/NOAA global ecosystem (11 categories)	DeFries & Townshend (1994)	EPA/NOAA global ecosystem (11 categories)		

>The annual variations of SO2 measured at LTP background regions during the last decade show that the mean temperature of SO2 remained almost same, while the high concentration events increased more.

History of aerial measurement

Year	Measurements period	History	flight number		
1995~6	95.12/3~5, 96.3/2~4, 11/17~19	1/17~19 Demonstration flight and initial observation were conducted for aerial measurement			
1997	1/14~16, 10/3~5, 12/17~19	The tracks over the southern sea and eastern	15		
1998	4/26~27, 11/7~10	sea were added in measurement, and crank and	9		
1999	4/9~11, 6/19~22	cross-section were measured by altitude in spring and autumn.	8		
2000	6/9~17, 11/15~19	Measurement was conducted over the western	13		
2001	4/13~17, 11/7~10	sea, eastern sea, southern sea, and inland.	9		
2002	3/7~11, 4/17~21, 12/14~19	* Ground-based measurement was conducted	11		
2003	4/5~7, 5/28~6/4, 11/13~18	jointly with the Institutes of Health and	11		
2004	3/17~19, 6/15~16, 10/13~21	Environment in six cities and provinces in Korea.	14		
2005	4/15~25, 10/15~25		12		
2006	4/1~15, 6/6~16, 10/16~26	Measurement was conducted over the western,	12		
2007	4/16~26, 10/15~25	eastern, southern seas and inland 12 times a year.	12		
2008	5/20~5/29, 8/18~24, 10/9~18	Measurement was conducted over the western	12		
2009	4/13-22, 5/20-30	sea in spring and autumn, with inclusion of the ion components of particular matter.	7		
Total			155		

	ati	st	Ca	all	res	su	Its	5	0,	2 r	ne	as	sul	rer	ne	m	S			7
weat	_	-	-		-					-	-		-	-		-	-			
and the	in the s			_			-		_	_	_	_	-	_	-			-		-
	- 65	21	4.4	15	6.6	1.0-	- 31	8.0	8.8	2.8	22	5.6	4.6	-34	197	1.7	8.7	1.3	1.6	
	0.5	10	0.3	42	4.5	41	16	4.0	HT.	11	3.6	12	0.2	1.4	11	-4.2	0.0	11	1.0	
11000	internal.	14	4.4	0.9	3.7	10	14	11	0.5	.1.2	4.1	32	- 44	1.2	1.9	2.0	0.5	0.0	4.0	N.
	125	13	-0.1	0.0	2.0	11.4	-0.9-	28	0.2	1.0	2.6	2.0	84	0.9		0.0	45	n.i	11.0	
	10	10	11.2	0.5	0.0	1.3	.11.6	14	14.1	147	41	11.5		8.6	04.			82	-8.2	
	50	4.01	44	3.7	34.	11.6	.0.6	46	82	4.6	13	1.9	1.5	1,4	4.4	-	1.4	6.0	4.6	
	Pro-	AI		14	1.0	0.0	0.1	.29	112	1.1	0.3	11	1.1		1.9	-		11	11.5	
		13	45	1.9	11	4.5	-0.4	1.7	0.7	.83	0.6	1.6	.0.0	11.1	1.7	2.0	2.6	20	0.4	1
1090- 200894		12	63	11.7	1.1	- 10.9	8.4	1.1	n.t	8.2	e.t	1.0	1.0	Die	10.00	-0.0	21	1.8	14.2	
	175	1.0	0.1	0.0	- 85-	.0.4	0.3	8.0	0.1	8.1	63	87.	-6.1	0.5	0.5	:0.0	4.4	67	112	
	×.	0.10	-0.0	0.4	0.0	.0.2	.01	-0.)	0.0	OBE-	8.9	4.1	(0) ·	0.1	4.2	-94-	.0.7	63	61.	
	tin.	<u>ñ9</u>	0.7	50	-0.6	(1.4.	- 8.6.	7.2	0.3	-0.8	83	6.0	6.1	5.5	.1.2	10.0	New	tiph.	0.8	
	100	12.4	83	1444	17	113	0.4	1.1	11.2	10.0	0.3	LI.	10.0	13	1.0	11.01	make	Here	M.D-	
	-	0.5	8.5	-	29	0.3	. 8.2	0.0	0.1	0.64	-	28	- 6.5	1.0	0.8	- 8.0	tuti	hin'	- 11.0	-10
10000m	meter.	9.1	0.7	-	7.6.	82	6.0	65	μī.	84	#1	14	(12.)	цz	117	8.0	1545	Yark.	94	
	255	1.1.1	03	166	14	62	0.2	ă.o	. 11.1	0.7	0.3	14	-0.2	0.2	1.0	0.0	chile.	halv	45	
	14	0.1	03	No.	12	44	10.2	0.0	ui.	"at	103	15	101	0.1	6.0	0.0	-	in	62	

3-5 Hazardous materials contamination, such as EDCs and POPs

- Director, Kyung hee-CHOI, NIER, Korea

 5 Relevant Laws for Chemicals Management in Korea 13 laws are managed by 7 ministries (including Ministry of Env. 		
Toxic & Explosive Chemicals in working places	Ministry of Labor	Industrial Safety and Health Act
Agricultural Chemicals, Fertilizers	Ministry for Food, Agriculture, Forestry & Fisheries	Agricultural Chemicals Control Act Fertilizers Control Act
Medical Supplies Narcotics Cosmetics Food additives	Ministry for Health, Welfare & Family Affairs	Pharmaceutical Affairs Act Narcotics control Act Cosmetic Act Food Sanitation Act
Explosives	Ministry of Public Administration & Security	Explosives Safety Control Act Gun, Sword and Gunpowder Control Ac
High Pressure Gas, Industrial Products	Ministry of Knowledge & Economy	High Pressure Gas Safety Control Act Quality Management and Industrial Products Safety Control Act
Explosives	Ministry of Land, Transport & Maritime Affairs	Ship Safety Act

2.3 Chemicals Management

2.3.3. Regulation of Toxic / Restricted Chemicals

Required to Register

People who want to produce, market, store, transport, or use toxic chemicals
 597 toxic chemicals (2009)

Regulation on the import of toxic chemicals

- People who intend to import a toxic chemicals for the first time shall give notice of its type, application, etc, to Ministry of Environment
- Reagent for tests, research, and inspection are examined

Regular/irregular facility inspection

→ Applications for regular inspection (every year) & safety inspection (if necessary)

Post management for toxic chemicals handlers

Reporting annual results of manufacturing, sales, storage, transportation⁰⁵ MHCONH

Required to obtain business permission

→ Restricted chemicals, banned chemicals (PCBs, Aldrin, Endrine, etc.)

Needs prior authorization for the import restricted chemicals

Reagents for tests, research, and inspection are exampted

POPS (Persistent Organic Pollutants)

Future Works and Challenges

POPs Control Act

1153

- Amend for inclusion of New 9 POPs
- Revise a Basic Strategy for POPs management

Implementation of Convention

- Update the National Implementation Plan for POPs
 Include additional information related to New 9 Chemicals
- Strengthen the Activity for Data Warehouse in East Asia
- Participate the Activity of Effectiveness Evaluation, Technical Assistance in region

Research and Cooperation

- Continuous researches in accordance with the research plan
- Strengthening Local, Regional & International Cooperation
- Risk Reduction Measure for Hazardous Chemicals

Mercury

115

Mercury management plan was prepared by MOE in 2006 and the projects are in progress

- Management of Products and Wastes containing mercury
- Management of Emission and Discharge Sources
- Monitoring and Risk Assessment
- Hg conc. in blood, Hg accumulation in fish

504 NHOONH

3-6 Air pollution, a regional challenge for Northeast Asia

- Director, Fan MENG, CRAES, China

$$Rij = \frac{Hij}{\sum_{i}^{n} Hij} \times 100 \%$$

• Where *Rij* is the contribution of i-th emission source to j-th receptor; *Hij* is the concentration or deposition amount at j-th receptor due to i-th source. In this study, receptors and emissions are the same 5 regions. *Hij* can be obtained by calculating the difference between the deposition of j region using the all emissions and the deposition using the emission from all regions except i region.

S/R			п		n m		IV	v	Total Dep. from 20% NOx Emi. of ith Region			
100	ton	%	ton	%	ton	%	ton	%	ton	%	ton	%
1	42210	6.41	14096	0.789	5352	0.342	4952	1.91	27207	1.78	93817	11.
п	91574	13.9	274695	15,4	121505	7.76	24222	9.35	87465	5.72	599461	52.
ш	2676	0.406	70626	3.96	167030	10.7	2864	1.11	12610	0.82	255806	17.0
IV	2064	0.313	2308	0.129	2376	0.152	9911	3.82	31068	2.03	47727	6.4
v	567	0.086	1808	0,101	2109	0.135	6324	2.44	134122	8,77	144930	11.
Total Dep. of ith Region	139091	21.1	363533	20.4	298372	19.1	48273	18.6	292472	19.1	1141741	98.3
onN/a	Total	Nitrate		ion from Region	20% NOx E	ni, of i	■V ■IV ■III					

Collaboration in the Future

(chaired by NIES President)

4-1 Proposal of New cooperative project

- Risk assessment and safety guideline on recycled products
 - Senior researcher, Dong-Jin LEE, NIER, Korea

4-1 Proposal of New cooperative project

- Risk assessment and safety guideline on recycled products

i

Human Risk Exposore (US EPA)

Group	p (18)	Chemicals (153)				
Me	etal	Mn, Cr. Co, Ni, Cu, Zn, Ar, Se, Sr. Cd, Sn, Sb, Ba, Hg, Pb				
Flame re	stardants	Tri-o-cresyl phosphate, Tris(2-chloroethyl) phosphate				
Color	urante.	Disperse Blue 1, Disperse Blue 3, Disperse Blue 106, Disperse Blue 124, Disperse Yellow 3, Disperse Orange 3 Disperse Orange 37/76, Disperse Red 1, Solvent Yellow 1, Solvent Yellow 2, Solvent Yellow 3, Basic Red 9, Basic Violat 1, Basic Violat 3, Acid Red 26, Acid Violat 49				
Monomers	(migration)	Acrylamide, Bisphenol A, Formaldehyde, Phenol, Styrene				
Slovents	migration	Trichoroethylene, Dichloromethane, 2-Methoxylethyl acetate, 2-Ethoxylethanol, 2-Ethoxylethyl acetate, Bis(2 methoxylethyl) ether, 2-Methoxybropyl acetate, Methonol, Nitrobenzene, Cyclohexane, 3,5,5-Trimethyl-2 cyclohexene-1-one, Toluene, Ethylbenzene, Xylene(all isomers)				
	inhalation	Toluone, Ethylbenzene, Xylene(all isomers), 1,3,5-Trimethylbenzene, Trichloroethylene, Dichloromethane, n-Hexane Nitrobenzene, Cyclohexanone, 3,5,5-Trimethyl-2-cyclohexane-1-one				
Wood pre	sertatives	Pentachlorophenol and its salts, Lindane, Cytluthrin, Cypermethrin, Deltamethrin, Permethrin				
Presentatives(except wood preservatives)		Phenol, 1,2-Benzylisothiazolin-3-one, 2-Methyl-4-isothiazolin-3-one, 5-Chloro-2-methyl-4-isothiazolin-3-one 5-Chloro-2-methyl-4-isothiazolin-3-one + 2-methyl-4-isothiazolin-3-one, Formaldehyde (free)				
Plasticisets(migration)		Triphenvl phosphate, Tri-o-cresyl phosphate, Tri-m-cresyl phosphate, Tri-p-cresyl phosphate				
Organo Tin compounds		MBT (Butyltin), DBT (Dibutyltin), TBT (Tributyltin), TTBT (Tetrabutyltin), MOT (Octyltin), DOT (Dioctyltin), TCy (Tricyclohexyltin)				
PBBs		Bromobiphenyl, Dibromobiphenyl, Tribromobiphenyl, Tetrabromobiphenyl, Pentabromobiphenyl, Hexabromobiphenyl, Hexabromobiphenyl, Nonabromobiphenyl, Decabromobiphenyl				
TOBPP		Penta-PBDE, Octa-PBDE, Deca-PBDE, Tetrabromobisphanol A, Hexabromocyclododecane, TDBPP				
PAHs		Benzo[a]anthracene, Benzo[a]pyrene, Dibenzo[a,h]anthracene				
	d Benziene oluene	Dichlorobenzenes, Trichlorobenzenes, Tetrachlorobenzenes, Pentachlorobenzenes, Hexachlorobenzenes, Chlorotoluenes, Dichlorotoluenes, Trichlorotoluenes, Tetrachlorotoluenes, Pentachlorotoluenes				
Azo con	npounds	4-Aminodiphenyl, Benzidine, 4-Chloro-o-tokuldine, 2-Naphtylamine, o-Aminoazotokuene, 2-Amino-4-nitrotokuene, P-Chloroanline, 2,4Diaminoanisole, 4,4'-Diaminodiphenylmethate, 3,3'-Dichlorobenzidine, 3,3' Dimethylopenzidine, 3,3'-Dimethylbenzidine, 3,3'-Dimethyl-4,4'-Diaminodiphenylmethane, p-Kresidine, 4,4' Methylene-bis (2-chloroanline), 4,4'-Oxydianiline, 4,4'-Thiodianiline, o-Tokuidine, 2,4-Tokylenediamine, 2,4,5 Trimethylaniline, 2-Methoxyanline,4-Amino-azo-benzene				
Philte	alates	DINP, DEHP, DNOP, DIDP, DBP, BBP				
Vulcanization	n accelerator	2-mercaptobercothazole (MBT), Dialkyldithiocarbamate, Dialkylthiuram				
Antio	xidant	2,6-bis-(1,1-dimethylethyl)-4-methylphenol (BHT), 2,2-methylene-bis-(6-(1,1-dimethylethyl)-4-methylphenol)				
PC	:Ba	Chlorobiphenyl, Dichlorobiphenyl, Trichlorobiphenyl, Tetrachlorobiphenyl, Pentachlorobiphenyl, Hexachlorobiphenyl, Hestachlorobiphenyl, Octachlorobiphenyl, Nonachlorobiphenyl, Decachlorobiphenyl				

		1			
Screer	ning Test N	Nethod			
	Metals	Wood Presetaves	Monomer Plasticisers Phthalate	Nitrosamine	Formaldehyde
Material	All	wood	Synthetic resin	Synthetic rubber	Wood Synthetic resin
Pretreat- ment	EN 71 Part 3	EN 71 Part 9		solvent + ultrasonic wave (DCM, 2hr)	
	1M HCI 1:50 mixing	distilled water, ethanol	DCM 1:125 mixing		Extracting by distilled water
Instrument	ICP	GC/MS	GC	/MS	HPLC

	Classificatio n	Exposure route				
		Mouthing	Direct digestion	Hand-to-	Food	
Nursing/ veaning	Nursing bottle	x	x	x	0	
product	Pacifier	0	x	x	х	
	Tooth developer	0	x	x	x	
	Mother milk pack	х	x	x	0	
	Soup bowl	0	x	x	0	
	Baby cup	0	x	x	0	
	Plastic block	0	0	0	x	
	Plastic doll	0	0	0	x	
Toys/ cessory	Doll others	0	0	0	x	
Considering and	Wooden block	0	0	x	x	
	Wooden doll	0	0	0	x	
	accessorie	0	0	O	x	

	ermitted and stat	ted companies for v	
I. Waste ad	ad		
material	- Recycled Al ₂ (SO ₄) ₃ - phosphoric acid	- Recycled Fecl ₂ , Fecl ₃ - Hydrochloric acid	- Recycled nickel sulfate(NiSO ₄)
Recycled product	- Sulface grease	- Zinc sulfate fertilizer	
2. Waste al	kali		
material	- Ni scarap - Copper oxide(Cu ₂ O)	- Cd ingot - Pd	- NaOH
Recycled	- Nickel - cadmium battery		

material	- PE - PP - ABS - PET - PVC	PC HDPE SAN Reclaimed rubber chip Elastic packaging chip	- Tire chip - RDF - RPF(solid fuel) - Methyl-metal monoraid
Recycled product	 Rubber block Rubber matte Elastic bottom ash Sanitary rubber product Container(food packaging) Water pipe Sewage disposal tank Bottom ash 	Rubber box Boundary stone Rubber rope string Agricultural vinylstring Agricultural reflectionfilm Insulation Liner	 band box Protection box Gutter guard sheet synthetic resin flexible cable tube
4. Incinerat	tion bottom ash and fly	ash	
material	- Regeneration sand - cobalt	- Cement subsidiary material	- Incineration fuel
Recycled product	- Filling material - Top - soil layer - compost	 brick regeneration block Roofing tile 	- Thermal incineration - feed - compost

		0.000	
material	- fertilizer.compost.feed,	material	
Recycled product	- Fertilizer	- Compost	- feed
. Waste ref	ractories and ceramic	wire drift	
material	 Plate glass MaO-C. castable (fefractories material) Cement subsidiary material 	Smash glass Slag powder recycled aggregate alumina	 Regeneration glass sand Stone powder Iron sharing platinum
Recycled product	- Subgrade material - block	- Top - soil layer - road blocd	 Filling material Heat insulating material (glass wool insulating material)
7. Dust			
material	- Cement material - lead - manganese	 recycled aggregate gold-silver ash vanadium 	- Solid fuel - copper ash - stainless steel
Recycled	- Blast fumace slag cement - Road material	- Top - soil layer - brick(fire, solid)	- Filling material - fertilizer

8. sludges			
material	 recycled aggregate Cement subsidiary material Ni Copper ash nickel sulfate 	- Lime chip - alloy - gold - Alloy iron	- Coal ash - Al - Iead - Aluminum sulfate
Recycled	- Mixed concreate	- Subgrade material	- Fill material
product	- Top - soil layer	- Reinforced soil green	- soil green
	- Product Compost	- Organic fertilizer	- feed
9. Waste fib	ers		
material	- Needle felt - fabric	- feit - Polyester fiber	- Wool fiber material - spinning wool material - fuel
Recycled product	- clothes - Thermal insulation material	- Fiber branch pipe	- Sound absorbing plate
10. Waste le	athers		
material	- Leather fabric	- Leather scrap	- cowhide
Recycled	- Organic fertilizer		

	attery		In a second s
material	- Lead lump - zinc lump - Ammonium phosphate	- manganese - cadmium	 nonferrous metal nickel
Recycled product	- Regeneration battery	- battery	
2. Waste lin	nes		
material	- Blast furnace slag powder - Calcium hydroxide	- Regeneration aggregate - Refine gypsum	- Phosphate refine lime
Recycled product	- Top - soil layer - fertilizer - chalk	- asphalt filler - land conditioner	- Blast furnace slag cement - Gypsum board
13. slag			
material	- slag - coal ash - Zn - Au	- Regeneration soil - cement material - Al - pd	 Regeneration molding sand slag Ni Alloy
Recycled product	- slilcate fertilizer - Top - soil layer	- soil conditioner - Filling material	- Thermal insulation material (mineral wool)

material	- aluminum alloy lump - stainless	- aluminum	- Deoxidation agent
Recycled product	- Metal can	- Wire netting	
15. organisr	n residue		
material	- Soybean oil - chitosan	- Chicken oil - Dry beer yeast	- cuttlefishes
Recycled product	- fertilizer - Ground bait	- feed	-Compost
16. Waste w	ood chip	-	1
material	Squre wooden stick waste forest tree Sawdust(compost) ignition briquet	- Wood chip - Fertilizer material - Solid fuel	- sawdust - Compost material - Auxiliary fuel
Recycled product	- Filling material - particle board - charcoal - Bottom ash	Children playground chair Boundary fence Corrugated board box Paking box	- Regeneration pallet - Cable drum

material	- MC - ANT - IPA - TCE - D.M.F - VAM	- THF - PGMEA - acetone - solvent - thinner - toluene	-polyol - NaOH - methanol - cleaner - Coationg solution - stripper
Recycled product	- Refined oil - cutting oil	- Machine oil - rust preventive oil	- hydraulic fluid
8. Waste o			
material	- DOP	- stripper	- Feeing oil paper
Recycled product	- Lubricating oil - Machine oil - Rust preventive oil	 Grinding oil hydraulic fluid Grease 	- Cutting oil - fuel oil(refined) - Regeneration soap
9. Waste a	bsorbent		
material	- gold	- silver	- Alloy copper lump
Recycled	- Regeneration powdered coal	- Regeneration activated cabon	- Absorbent

Material	- Vanadium - nickel catalyst	 molybdenum platinum catalyst 	- palladium
Recycled product	- cement	- Slag cement	
21. Waste s	anddust – sandblast		
material	- Cement material - Regeneration sand dust	- Regeneration sand	- Dry sand
Recycled product	 share protection block Filling material 	- brick	- Top - soil layer
22. Waste p	aper		
material	- Compression form - heat source	- Compression waste paper	- Paper scrap
Recycled product	- Regeneration paper - Toilet paper fabric	- box	- Toilet paper

Workshop of The Sixth TPM

[Tripartite Presidents Meeting among NIER, CRAES and NIES]

Realization of Low Carbon Society through Climate Change Adaptation

Nov. 25 ~ 28, 2009
SEOUL LOTTE HOTEL

National Institute of Environmental Research Republic of Korea

Workshop of TPM6 Opening Remarks

> President. Seung-Joon YOON National Institute of Environmental Research

It is my great pleasure to welcome you all to thisworkshop on "Realization of Low Carbon Society through Climate Change Adaptation."

Over the past year or so, the global financial crisis has been the biggest challenge of all. Despite this economic crisis, global community continues to make its efforts to tackle climate change. More and more governments around the world are working together for a new "green growth" paradigm based on low-carbon economic development. It is my understanding that we, three nations, are also headed in the direction of green growth.

In Korea, President Lee Myung-Bak announced "Low Carbon, Green Growth" as a new national vision in August 2008. The Green Growth is a sustainable growth that reduces greenhouse gases and environmental degradation and a new national development paradigm that creates new growth engines and jobs. To achieve the goal, the government will invest 38 billion dollars over the next four years on "Green New Deal" project for the development of green and low-carbon infrastructure. In line with this, although Korea is not an Annex- I country, however, we have set a voluntary national 2020 target for greenhouse gases reductions. The government proposed three reduction scenarios in August. A nationalconsensus was built through consultations with various stakeholders such as business sector, civil society and academia. Last week, the cabinet meeting decidedto take the biggest reduction scenario as a national target which is 30% reduction from the 2020 BAU emissions

Japanhas always been progressive in this area, and its efforts resulted in substantial improvements in terms of energy efficiency and green technologies. China has a growing interest in the environment. It is reported that the Chinese government mentioned that green technologies and low-carbon growth will be the keys to the bright future of China.

or 4% reduction from the 2005 emission level.

Today, we, the three environmental research institutes will share our experience, new ideas and research outcomes on low-carbon strategy. Our meeting will be a valuable opportunity with which we can review the recent progress, assess what more needs

to be done, and discuss what we can do together in moving towards the goals.

I believe today's workshop will be the most appropriate occasion to discuss the issue because Post-Kyoto negotiations are to be held in Copenhagen in December. Post-Kyoto negotiation table will be the venue where the worlddiscuss future climate change regime succeeding the first "commitment period" of the Kyoto Protocol.

In closing, I'd like to thank all speakers and participants. Thank you.

Introduction for Climate Change-Prediction and Impact Assessment

(Moderator : Dr. You-Deug HONG, NIER, Korea)

1-1 A new version of the atmosphere ocean coupled Global Climate Model(GCM) 'MIROC' for climate chang simulation

- Dr. Tomoo OGURA, Climate Risk Assessment Research Section, NIES, Japan

1-2 Climate change: its impacts on hydrology, Fresh water quality and stream ecology

- Dr. Kyung-Hyun KIM, Water Pollution Cap System Division, NIER, Korea

1-3 Impact Assessment of climate change on forest-steppe ecotone in Northern China

- Dr. Shihai LU, Institute of Ecology, CRAES, China

Coffee Break

1-1 A new version of the atmosphere ocean coupled Global Climate Model(GCM) 'MIROC' for climate change simulation

- Dr. Tomoo OGURA, Climate Risk Assessment Research Section, NIES, Japan

1: FRCGC/JAMSTEC, 2: RIAM/Kyushu Univ, 3: NIES, 4: Nagoya Univ, 5: CCSR/Univ of Tokyo

Climate Change Experiment with CCSR/NIES/FRCGC Climate Model

	MIROC3.2	MIROC4.1
Dynamical core	Spectral + semi-Lagrangian scheme (Lin & Rood 1996)	Spectral+ semi-Lagrangian scheme (Lin & Rood 1996)
Vertical Coordinate	Sigma	Eta (hybrid sigma-p)
Radiation	2-stream DOM 37ch (Nakajima et al. 1986)	2-stream DOM 111ch (Sekiguchi et al. 2008?)
Cloud	Diagnostic (LuTreut & Li 1991) + Simple water/ice partition	Prognostic PDF (Watanabe et al. 2008) + Ice microphysics (Wilson & Ballard 1999)
Turbulence	Level 2.0 (Mellor & Yamada 1982)	Level 2.5 (Nakanishi & Niino 2004)
Convection	Prognostic A-S + critical RH (Pan & Randall 1998, Emori et al. 2001)	Prognostic A-S + critical RH with water/ice detrainment
Aerosols	simplified SPRINTARS (Takemura et al. 2002)	full SPRINTARS + prognostic CCN
Land submodel	MATSIRO	MATSIRO MOSANCSR MES

1-2 Climate change: its impacts on hydrology, Fresh water quality and stream ecology

- Dr. Kyung-Hyun KIM, Water Pollution Cap System Division, NIER, Korea

The Sixth Tripartite President meeting among NIER, CRAES and NIES 25 - 28 November 2009, Seoul, Korea

Integrated Impact Assessment of Climate Change on Watershed Environment:

Research Framework and Preliminary Results

Kyunghyun Kim, Hong-Tae Kim and Eun-Hye Na

National Institute of Environmental Research

Background

- Thousands of scientific papers and IPCC reports made each country recognize climate change and investigate its environmental, economical and social impacts
- Research of the impacts on water quality and aquatic ecosystem is somewhat behind compared to other climate change impact assessment areas because it cannot be directly addressed from global climate model outputs.
- Rather, it requires hierarchically integrated modeling framework consist of global climate change, watershed hydrology, stream flow, water quality and aquatic ecosystem in turn.

Objectives

- To investigate climate change impacts on watershed hydrology, stream flow and water temperature.
- To assess impacts by change of stream flow and temperature on water quality and aquatic ecosystem
- Downscale issues of GCM/RCM outputs to feed into watershed model, determination of headwater temperature for water quality modeling

Possible impacts of stream flow change on water quality and aquatic ecosystem

- Increased stream water temperature may negatively affect coldwater ecosystems by direct biological impacts or changing water quality
- Heated stream water may have insufficient dissolved oxygen for aquatic life and may cause increased dissolution of soluble compounds (e.g., hydrocarbon and metals) possibly toxic to many aquatic invertebrates
- Toxic green-blue algae may dominate
- Coldwater fishes may disappear or move upstream
- Turnover in lakes may weaken so that dissolved oxygen remains insufficient near the bottom

- Low flow is especially important for water quality and aquatic ecosystem and thus change of it may have significant impact on them
- Decrease in low flow may worsen water quality especially in point-source-dominating streams due to increase of pollutant loading relative to flow and retention time that causes more algae growth.
- Decrease in low flow may also decrease aquatic habitat and so negative for aquatic ecosystem

Research Framework

GCM/RCM Output Process

- Statistical downscaling
- Hydrological Impact of Climate Change
 - Coupling of land surface process model(LSPM) and watershed model
 - Impact on watershed energy balance and soil moisture
 - Impact on flood and drought patterns
- Water Quality and Aquatic Ecosystem Impact of Climate Change
 - Impact on water temperature and water quality
 - Impact on aquatic ecosystem

Streamflow Change

Using SNURCM Data for SWAT

- 12 grid cells of SNURCM cover Han River Basin
- Quantile Mapping Method to downscale RCM outputs
- SWAT Model
 - Calibrated with measured flow data for 2006
 - Provides low flows through the modeling section

Multivariable Regression Analysis

- NCARCSM/SNURCM
 - SNURCM output based on A1B scenario
 - 9 years daily data (2091~2099)
 - Rainfall, Air temperature, Solar radiation, Wind, Humidity
 - 12 grid cells cover Han River Basin
- Downscaling
 - Quantile Mapping Method

Stream temperature simulation result

TN conc. change due to stream temperature change

Environmental Fluid Dynamic Code(EFDC) Model

NCARCSM/SNURCM

- SNURCM output with A1B scenario
- 9 years daily data (2091~2099)
- · Rainfall, Air temperature, Solar radiation, Wind, Humidity
- 12 grid cells cover Han River Basin
- Downscaling
 - Quantile Mapping Method

1-3 Impact Assessment of climate change on forest-steppe ecotone in Northern China

- Dr. Shihai LU, Institute of Ecology, CRAES, China

Background

- Climate change could have serious effects on forested ecosystems (Loehle and LeBlanc, 1996).
- In forest and grassland ecotone, the climate warming could have adverse effects on forest, these effects should be most evident at biome transition zones (Loehle, 2000).
- A number of past simulation studies have suggested that impacts in a variety of forest types could include geographic range shrinkages, conversion to grassland, and catastrophic forest decline or dieback(Dale and Franklin, 1989; Overpeck et al., 1991; Lindner et al., 1996).

Characteristics of Research Area

- In the north part of China, forest-steppe ecotone located in the transition zone of Daxing'anling forest and Hulunbeir altiplano.
- District: Hulunbeir, Inner Mongolia of China
- Climate type: Temperate zone, Sub humid-Semiarid climate
- Area: 253,000 Km²
- Vegetation: a typical forest-steppe ecotone
 (a mixed conifer-broadleaf forest-steppe ecotone)

Dynamics of Climate factors

In Hulunbeir forest-steppe ecotone of northern China, the pattern of temperature and precipitation has occurred the obvious variety with being influenced by the global climate change in the past 50 years.

Observation data of 8 key weather station was studied...

- Air temperature change...
- Annual precipitation change...
- Atmosphere Drought Index...

Landscape pattern changes in ecotone

Change of forest and grassland centroid in Hulunbuir from 1988 to 2004 (Unit: km)

Sec. 1	19	88	19	95	20	00	20	04	1988	~2004
Types	x	Y	x	Y	x	Y	x	Y	ΔX	ΔY
Forest	1162.9	5563.3	1166.1	5577.5	1166.1	5576.8	1165.8	5559.8	+2.9	-3.5
Grassland	1102.1	5460.9	1108.7	5467.5	1109.6	5471.1	1107.3	5490.4	+5.2	+29.5

> The centroid of the forest patch has moved $3\sim4$ km southeast.

> The centroid of the grassland patch has moved about 30.0 km northeast.

Landscape pattern changes in ecotone

Changes of delenietkenverland ihredoroms

Correlation analysis between water area and meteorological factors (Temperature, Precipitation and Evaporation) in Dalai Lake

	Temp	erature	Precip	oitation	Evapo	oration
Time	Correlation r	Change rate (km²/°C)	Correlation r	Change rate (km²/mm)	Correlation r	Change rate (km²/mm)
Spring	0.211	-20.60	0.323*	1.86	0.122	-0.25
Summer	0.517**	-49.69	0.290	0.56	0.393*	-0.37
Autumn	0.357*	-35.49	0.051	0.22	0.502**	-0.82
Winter	0.348*	-28.09	0.219	1.45	0.446**	-1.20
All year	0.576**	-79.93	0.243	0.43	0.456**	-0.24

Changes of the community structure

Community types	Distribution	Height (cm)		Coverage (%)		Biomass (kg/hm²)	
oonnanty typoo	Distribution	1988	2006	1988	2006	1988	2006
Betula platyphylla	Top mountainou area	35.7	30.4 🅽	40	50 J	2790	2210
Spirae salicifolia	High mountainou area	39.7	30.2 🅽	85	75 🕽	5190	3760
Filifolium sibiricum	Gentle slope hills	41.5	28.6 🕽	80	65 🕽	4980	2940
Stipa baicalensis	Middle mountainous area	53.5	40.7 🕽	75	60 🅽	4770	3060
Leymus chinense	Other hills	45.3	31.3 🍃	80	60 🕽	3930	2540
Other grasses	Valley	36.2	23.9 🕽	85	70 🕽	4360	3040

Changes of ecotone community structure in the past 20 years

Global Climate Change Monitoring, Adaptation and Mitigation

(Moderator : Dr. Fan MENG, CRAES, China)

- 2-1 Industrial pollution reduction and green technologies
 - Dr. Yanping LI, Center of Cleaner Production and Circular Economy, CRAES, China
- 2-2 Observation of global carbon distribution by GOSAT and its role in Climate change research
 - Dr. Yoshifumi YASUOKA, NIES, Japan
- 2-3 Climate change: its impacts and adaptation
 - Dr. Chang-Geun SONG, Climate Change Research Division, NIER, Korea

Lunch

2-1 Industrial pollution reduction and green technologies

- Dr. Yanping LI, Center of Cleaner Production and Circular Economy, CRAES, China

	Model of LCE
	$E_t = P x C x GDP x E_e$
P C GD	total emission of carbon; population; gross domestic product (GDP) per capita; P gross domestic product; emissions per unit of energy consumption
🥹 + 🛙	环境科学研究院 10

	(by 2009)	
序号	标准合称	标准起草单位
1	清清生产标准 石油炉制起	近空像清清生产中心
2	HJ/F 125-2003 清社庁で标理 病無行业 13/F 126 2003	中国石油化工作闭金司清清生产技术中心 山西省环境科学研究院
5	新学品/生产-标志器。 出开客 行动图 《384号/举》	中国和新工业的特殊性性产生的企
	HJ/1 127 2003	12月11日開始,地球中的市场,市田田市地址,1月1日市
4	清白山 がっかいが 中国 沿り相り進出と 111/1 183-2005	中国种族科学研究院 中国航海工业协会啤酒分会
	約約5年2月、南州村村約1日1月1日(双油市12月)	「大大牛」山「平平大阪牛」「柴牛」は食う」「将牛」うた肉点
	HJ/1 184 2006	41.414613年7月3日年4月3日年7月1日年2月2日
6	·南京古村、产本市2種 6万%3342 (初日1445) 11.1/T 1165-2006	11日、63、67年68年3月1日第三日第三日第三日第三日第三日第三日第三日第三日第三日第三日第三日第三日第三日
7	2時 25. 4回 2 ^{mm} 秋水 2011 - 1日 2021 (年月2期) 国北	「「「「「「」」」」」「「「「」」」」」「「「「」」」」」「「」」」「「」
2	TTLT 186 2006	中国和小组徽和计学中和广学的现象
ы	清清生产标准 电解信地 HJ/I 187-2006	北川町市市市区108(21世紀7年92月7 中国12日でに108天4月2日7月12日2日
Ŷ	清清生产标准 氮肥制造水	注:字發清清生产中心。
121	HJ/1 188 2006	化工程因素性的生化。
		(1) [ad] 2年 288 米1 当年 初年 今天世治
10	1曲15月41日~わた2種 4単位大学ナベル 11月2日 189-2008	また時間の資料が小さいためです。 新会議の資料であれた人口であ
	10.1.102-2004	中国外境科学研究院
11	结结生产标准 基本化学原料组织业(环氧乙烷/	出意机电防高压素服备有限公司
	25 國年 2	北京东方石化有限责任公司东方化工厂
12	HJ/1 190 2006 油油中小心地动用 光力 曲(10-10-10-10-10-10-10-10-10-10-10-10-10-1	(中)局が下す線楽目線を初下少に除る。 (中)局(第二)、(中)等(第二)、
19	110/1 293-2006	中国外境科学研究院、中国公子工业协会
		中国动山口口合动动动动动。
13	·清·2月24年7月4月21日 - 報告報告記 2月24日	(約7月) 指定 約4.5% (36.37% 6月) 分子 6月 分子 6月 分子 6月 (5.36岁 11.36~11.46月 安安 6年。)
1.5	TT/T 294 2006	1111117年2月1日1日1月1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日
14	約結牛产标准 电缆拧根 HJ/1311 2006	(1) 14日 3年 48年 4月 4月 4月 4月 (2) 16月
100		JE GENTRON DE CONSERVE
1 *	清洁地产标准 人造板行业(中部)批判准板)TTTT 315 2006	3時、大臣之王、公子」への時、「安王」の「安王」等で、「安王」の第二 いた、「四子」への時、水下、公告の日、天王」等で、日第二
16	清清生产标准 乳制品制造业(每个乳及全胎乳	黑龙江、船车站在周期开车等和开始展示。
	80) HJ/T 316-2006	中国 国际 网络 和中国经 初开 分别 图2
17	「南京市村」が小和志海 「北京和田丁 対応」(1988年)「南京の大市の市地市市村」が今日	内場古自殺区得活生产中位 北京主衛大型
• •	35.) LL/T 317-2006	171 (0) 24 - 53 74 - 72 50 57 572 152

	Thanks!
글 中国环境	科学研究院

2-2 Observation of global carbon distribution by GOSAT and its role in Climate change research

- Dr. Yoshifumi YASUOKA, NIES, Japan

TPM6 2009, Seoul

Observation of global carbon distribution by GOSAT and its role in climate change research

Seoul, November 24, 2009

.....

2-3 Climate change: its impacts and adaptation

- Dr. Chang-Geun SONG, Climate Change Research Division, NIER, Korea

gation and Adaptation				
	Mitigation of climate change	Adaptation to climate change		
Target systems	All systems	Selected systems		
Scale of effect	Global	Local to regional		
Lifetime	Centuries	Years to centuries		
Lead time	Decades	Immediate to decades		
Effectiveness	Certain	Generally less certain		
Ancillary benefits	Sometimes	Often		
Polluter pays	Typically	Not necessarily		
Actor benefits	Only little	Almost fully		
Monitoring	Relatively easy	More difficult		

7

1. Climate Change Adaptation and Its Urgency

Evolution of Vulnerability Assessment

- Example : Variables for Impact and Capability

Subsector	Proxy variables	Subsector	Proxy variables	
Settlement	Population at flood risk from SLR Population w/o access to clean water	Economics	GDP/capita Gini Index	
Food	Cereal production/area Animal protein consumption/capita	Human resources	Literacy Dependency ratio	
Health	Fertility Life expectancy	Environment	Population density S02 emission/area	
Ecosystem	% land managed Fertilizer use rate		% land unmanaged	
Water	Renewable supply and inflow Water use			

(Moderator: Mr. Makoto SAITO, NIES, Japan)

- 3-1 A voyage towards a low carbon society of Korea
 - Dr. You-Deug HONG, Climate Change Research Division, NIER, KOREA
- 3-2 Establishment of indicator system and scenarios of low carbon economy
 - Dr. Jiafeng FU, Climate Change Center, CRAES, China
- 3-3 Introduction of climate policy assessment and 2050 Japan and Asia low carbon society studies

- Dr. Tatsuya HANAOKA, Climate Policy Assessment Research Section, NIES, Japan

Coffee Break

General Discussion

Closing Remarks by Presidents of CRAES and NIES

Commemorative Photograp

Workshop adjourne

Signing ceremony of the 6th TPM Joint Communiqué (by three presidents)

Official Dinner hosted by NIES presiden

3-1 A voyage towards a low carbon society of Korea

- Dr. You-Deug HONG, Climate Change Research Division, NIER, KOREA

3-2 Establishment of indicator system and scenarios of low carbon economy

- Dr. Jiafeng FU, Climate Change Center, CRAES, China

1 Conceptual Identification

We believe, "Low Carbon Economy" is an economic pattern with certain level of carbon productivity and human development in order to control GHG emission. Carbon productivity means the GDP out of unit CO2 emission, the improvement of carbon productivity indicates more social fortunes out of less consumption of materials and energy. Human development means the economic development and social progress realized on the aspects of economic capability, health, education, ecologic protection, social equity and other human dimensions.

1 Conceptual Identification

The features of this concept lie in, on the one hand, the human development is constrained by carbon emission, and on the other hand, it's emphasized that the carbon emission isn't a handicap against realization of the target of human development.

the solution is to improve carbon productivity by technical improvement, energy saving and other approaches. This concept does not differentiate absolute or relative low carbon emission; however, in a short-term view, the energy efficiency and carbon output efficiency can be improved and relatively low carbon emission can be realized without changing its energy structure and industrial structure; in a long-term view, technical progress can realize absolute decrease of total carbon emission of a nation by substituting traditional energies with clean energies, application of low-carbon technology and other approaches.

→ 中国环境科学研究院

- 中国环境科学研究院

1 Conceptual Identification

Low carbon development has different connotations to different countries. We believe low carbon emission may be in relative significance or absolute significance, the key is to differentiate the development stages and the obligations of emission reduction.

developing countries, the basic needs of human development hasn't been satisfied, therefore, the increase of total economic aggregate accompanied by reduction of low carbon emission can be deemed as low carbon development; [relative reduction]

developed countries who have achieved the high target of human development should undertake the obligation of emission reduction, and realize absolute reduction of carbon emission on the precondition that high human development level is maintained. [absolute reduction]

🥏 中国环境科学研究院

2 Index System and Its Practice The conceptual model of low carbon economy (LCE) is: LCE = f {E, R, T, C} Here, E: economic development stage; R: resource endowment; T: technical factor; C: consumption model. To sum up, whether a country has realized low carbon economy depends on, besides the basic background of development stage, the potential of low carbon development on three key aspects, i.e. resource endowment, technical level and consumption mode, and as well as the efforts made by each country for transformation toward low carbon economy.

Target level	First-level index	No.	sub-level index	Description
Coping with climate change under the sustainab le framewor k	Low carbon production	(1)	Carbon productivity	confinement index
		(2)	Decline rate of carbon emission intensity	confinement index
		(3)	Unit consumption of key products/industrial earbon productivity	confinement index
	Low carbon consumption	(4)	Carbon emission of per-capita expenditure	confinement index
		(5)	Automobile ownership/1,000 persons	confinement index
		(6)	Per-capita household consumption	confinement index
		(7)	Ratio of modern service industry to GDP	confinement index
		(8)	Per-capita living space	confinement index
	Low carbon resource	(9)	Ratio of renewable energies to primary energy resources	confinement index
		(10)	Forest coverage	confinement index
		(11)	Carlson sequestration reserves	confinement index
		(12)	CO2 emission factor of unit energy consumption	confinement index
	Human development	(13)	Human development indicator	confinement index
	Low carbon policy	(14)	Legislation of low carbon economy and development planning	Guidance index
		(15)	Establish special management department for unified management	confinement index
		(16)	Establish carbon emission monitoring, statistic, supervision and transaction system	confinement index
		(17)	Enterprises' sense of social responsibility	Guidance index
		(18)	Publicity of low carbon economy knowledge of the public and publicity extent	Guidance index
中国环境科学	研究院	(19)	Building energy conservation standard	confinement index
Strength Strength Strength Strength	1492	(20)	Automobile fuel economy standard	confinement index

2 Index System and Its Practice

Jilin practice

The above analysis suggests that Jilin City has a long way to go to meet the target of low-carbon economy with respect to many indicators, except for forest coverage rate and per unit energy consumption CO2 emission factor and particular per unit product energy consumption indicators (see Table). This reflects a fact that Jilin City is currently at the stage of high-carbon economic development.

Fortunately, however, Jilin City is actively adopting measures to move faster towards low-carbon economy, for example, the city will reduce per unit GDP energy consumption by 30% during the 11th five-year plan period, 10% higher than the national average. Jilin City needs to make greater efforts although it has made considerable achievements in developing lowcarbon economy.

→ 中国环境科学研究院

First-level indictor	Number	Second-level indicator	Unit	National average	Jillin City	Status
100	0	Carbon productivity	RMB 10,000 ten carbon	1.56	0.83	Far behin
Lon-carbon output	<i>(</i> 2)	Per unit product energy-consumption in major sectors/carbon emission per unit of industrial value added in major sectors	Ton standard coal		-	Eur behim
	(3)	For copita carbon emission	Tim carbos/person	1.36	2,79	Far behin
Low-carbon consumption	-(4)	Per capita carbon emission for everyday energy consumption	Ton carbon/person	0.05	0.10	Far behin
Low-carbon resources	(3)	Per capita zero carbon margy consumption	Ton standard coal person	0,14	0.075	Far behin
	(6)	Forest coverage (ecologically preferable sity)	*	45	54.90	Met
	(7)	Presant energy consumption CO2 emission factor	Ten carbon ton standard coal	0.65	0.61	Mer
Low-carbon policy	(8)	Low-carbon economic development program	In place	None	None	Unnet
	(9)	Completimens of carbon emission monutaring, statistical and regulatory system	Complete	tracompleto	Incomplete	Urport
	(10)	Public awareness of low-carbon economy	Over 80%	Unknows	Unknown	Unknown
	(11)	Compliance with energy-saving building doign standard	Over 80%	Below 50%	100%	Mut
	(12)	Incentives for development of non- commodity energy	In place and implemented	In place	In place.	Met

	And the second	Key ch	aracteris	stics and r	esults of LCS mod	eis
NO.	Modeling paper	Model	Global/ National	Top-down/ Bottom- up	Carbon-plus STCO2 and %change in GDP (2050)	Key characteristic of model and / or analysis of carbon-plu run
1	Barker (UK)	E3MG	G	TD	\$100 tCO2 (2030) (+1.1%)	Technological change, emissions revenues
2	Akimoto (Japan)	DNE21	G	BU	Averaged cost of \$45.2~ 49.6/tCO2	International sectoral approach
3	Remme (Germany)	TIMES	G	BU	\$330/tCO2 (+1,3%)	Technological change
4	Edmonds (USA)	MiniCam	G	BU	\$1361CO2	technological change, integrated assessment
5	Bataile (Canada)	CIMS	N	Hybrid simulation	\$175~2004CO2	Price vs. non-price measures, emissions trading
6	Fujino (Japan)	Linked models	N	Hybrid	-0.83%=-0.90%= (A) -0.96%=-1.06%= (B)	Feasibility of long-term stringent CO2 reductions
7	Strachan (UK)	MARKAL Macro	N	Hybrid	\$402~490 (CO2 (-1.64%-2.21%)	International drivers on UK
8	Shrestha (Thiland)	AIM	N	BU	\$100nCO2	Technological change
9	Shukla (India)	AIM and MARKAL	N	Soft-linked	0%-1.35%	Sustainable development

3 LCE Scenarios Methodology

For low carbon economy development in China, ERI (Energy Research Institute) use three models in IPAC—IPAC-CGE model, IPAC-Emission global model and IPAC-AIM model. Four emission scenarios were designed by ERI.(1) BAU,(2) Low carbon scenario under the high GDP growth rate assumption (LC), (3) Enhanced low carbon scenario under the high GDP growth rate assumption (ELC), (4) Low carbon scenario in low growth rate assumption (LLC).

CO2 emission from the fossil fuel combustion, million tons of carbon

2010	2134	1943	1943	1869
2020	2779	2262	2194	2086
2030	3179	2345	2228	2033
2040	3525	2398	2014	1902
2050	3465	2406	1395	1387

3-3 Introduction of climate policy assessment and 2050 Japan and Asia low carbon society studies

- Dr. Tatsuya HANAOKA, Climate Policy Assessment Research Section, NIES, Japan

Introduction of Climate Policy Assessment and 2050 Japan & Asia Low-Carbon Society Studies

Tatsuya Hanaoka AIM (Asia-Pacific Integrated Model) Team Climate Policy Assessment Research Section National Institute for Environmental Studies, Japan

The Sixth Tripartite President Meeting among NIER, CRAES and NIES Seoul, Korea November 25-28, 2009

Climate Change Research Program Core Research Project 4

Developing a Vision of a Low-Carbon Society and Identifying Countermeasures through Integrated Assessment

Research targets Spatial (Japan, Asia, Global) Temporal (short- to long-term) Social (technology, economy, institute)

Research fields

- Vision & scenario to achieve a lowcarbon society by 2050
- (2) International policy for climate change
- ③ Quantitative evaluation of mitigation policies and measures

Emission reduction target according to a variety of differentiation criteria (target year 2020/ base year 1990)

Emission reduction target (from 1990)			US	EU25	Russia	Annex I	Reference			
		Japan					China	India	Non - Annex I	World
Figures from Höhne, N., D. Phylipsen, Moltmahn, S., 2007: Factors underpriving future action 2007 update, For the Department for Environment, Food and Rural Affairs (DEFRA), UK, (450ppmC02egatabilization)	Muti-Stage Approach ¹⁾	-31%	-38%	-36%	-52%	-41%	62%	235%	89%	9%
	Contraction and Convergence ²³	-31%	-18%	-34%	-48%	-32%	62%	168%	76%	10%
	Convergence 31	-33%	-9%	-35%	-47%	-29%	48%	180%	72%	10%
	Triptych Approach4	-29%	-8%	-31%	-45%	-26%	65%	103%	69%	10%
Calculation by AIM World Technology Model	Equal emission reduction cost ⁹	-5%	-24%	-27%	-32%	-25%	-	-	-	-
	Equal emission reduction cost per GDP ^(t)	-17%	-18%	-31%	-31%	-25%		+		-
Calculation by NIES, Kyoto University, and Tokyo	Convergence of emission per GDP ⁷⁾	- 3%	-10%	-26%	-52%	-25%	114%	65%	74%	14%
	Contraction and Convergence ²	-16%	-13%	-26%	-46%	-25%	72%	98%	74%	14%
Institute of Technology	Equal percentage improvement rage of emission per GDP ^{II}	-30%	-19%	-33%	-21%	-25%	160%	81%	74%	14%

Four groups of countries according to level of economic development, which are committed to differenty ypes of commitments. Equal emission per capita by 2050. Similar with C&C, with additional emission allowances to Non-Annex I countries. Sets emission targets to power, industry, transportation and residential sectors individually. Senario 2 of AIM calculation. Assumes 25% reduction from 1990 by Annex I as a whole. Senario 4 of AIM calculation. Assumes 25% reduction from 1990 by Annex I as a whole. Equal emission per GDP by 2050. Assumes halving global emission from 1990 by 2050. The rule is the same as 3), but assumes halving global emission from 1990 by 2050. Equal rate of improvement in all countries in terms of emission per GDP. Assumes halving global emission from 1990 by 2050.

123456789

	ed two different e societies for Japan
Vision A	Vision B
Vivid, Technology-driven	Slow, Natural-oriented
Urban/Personal	Decentralized/Community
Technology breakthrough Centralized production /recycle	Self-sufficient Produce locally, consume locally
Comfortable and Convenient	Social and Cultural Values
2%/yr GDP per capita growth	1%/yr GDP per capita growth

A Dozen Actions towards Low-Carbon Societies

Residential/commercial sector actions

1. Comfortable and Green Built Environment Efficiently use of sunlight and energy efficient built environment design. Intelligent buildings.

2. Anytime, Anywhere Appropriate Appliances

Use of Top-runner and Appropriate appliances. Initial cost reduction by rent and release system resulting in improved availability.

Industrial sector actions

3. Promoting Seasonal Local Food Supply of seasonal and safe low-carbon local foods for local cuisine

 Sustainable Building Materials Using local and renewable buildings materials and products.

5. Environmentally Enlightened Business and

Industry Businesses aiming at creating and operating in low carbon market. Supplying low carbon and high value-added goods and services through energy efficient production systems.

Transportation sector actions

 Swift and Smooth Logistics Networking seamless logistics systems with supply chain management, using both transportation and ICT infrastructure

7. Pedestrian Friendly City Design

City design requiring short trips and pedestrian (and bicycle) friendly transport, augmented by efficient public transport

Press release

on May 22, 2008

Energy supply sector actions

 Low-Carbon Electricity Supplying low carbon electricity by large-scale renewables, nuclear power and CCS-equipped fossil (and biomass) fired plants

 Local Renewable Resources for Local Demand Enhancing local renewables use, such as solar, wind, biomass and others.

10. Next Generation Fuels Development of carbon free hydrogen- and/or biomass-based energy supply system with required infrastructure

Cross-sector actions

11. Labeling to Encourage Smart and Rational Choices Visualizing of energy use and CO2 costs information for smart choices of low carbon goods and service by consumers, and public acknowledgement of such consumers

 Low-Carbon Society Leadership Human resource development for building "Low-Carbon Society" and recognizing extraordinary contributions.

International Workshop on Realization of Low Carbon Society through Climate Change Adaption Closing Remarks

> President. Wei MENG Chinese Research Academy of Environmental Sciences

Distinguished NIER president Prof. YOON Seung-Joon, NIES president Prof. OHGAKI Shinichiro, Ladies and Gentlemen:

After two days' intensive discussion, the Parallel Workshop of TPM6 is now coming to a conclusion. I'd like to express my sincere thanks to researchers who made splendid presentations, and also to those staff who made great efforts in the preparation of this meeting!

At TPM6, representatives from NIER, CRAES, and NIES presented their latest research and development, reviewed TPM activities and discussed future cooperation potentials. We see substantial research development achieved in each institute under our efforts. We are even glad to see that the cooperationand communication in field of environmental management and environmental scientific research among our three countries have been pushed forward with the strengthening and deepening of TPM. CRAES will continue to push this cooperative mechanism forward steadily as always.

In Parallel Workshop of TPM6, further communications and discussions concerning climate change, low carbon economy and society as well as industrial pollution control and green technologies were conducted. We not only shared among our three institutes' research achievements on adaptation to climate change and development of low carbon society, but also fostered mutual understanding in these fields, thus laid a solid foundation for further discussions on joint research projects. I believe that this would promote further more research for us.

It is found from workshop that besides the common interest in fields of air pollution control, solid waste management, etc., there appeared new research space and cooperation potential in fields of adapting to climate change and developing low carbon society. As the international efforts towards adaptation to climate change go on further, low carbon society is getting more and more attentions throughout the world, becoming inevitable choice for human society's development under the background of climate change. As one of the largest developing countries, China is eager to explore and research on a better and rapid way for social economic development according to the capacity and restriction of its resources and environment. It is an urgent task for Chinese government to choose the most appropriate path for the development of low carbon society, which should be suitable for China's specific situation. Nowadays, it is also a key research subject for researchers. It is noticed from the presentations that relevant research carried out by NIER and NIES would be quite helpful of us to learn and carry out relevant research and management. We hope that we can promote cooperative research in this field through the platform of TPM.

This meeting has achieved its expected results in terms of discussion achievements on relevant topics and the extent of academic communications.

Thanks again for the organizer of TPM6 and the Parallel Workshop, for your considerate and meticulous arrangement! Hope our three countries make more achievements in the cooperation and communications of environmental scientific research.

On this occasion, I would like to extend my sincere invitation to Presidents of NIER and NIES, as well as your colleagues, for attending TPM7 and the parallel workshop in China next autumn. CRAES would make the best to prepare and hold a fruitful and pleasant meeting.

Thank you! And wish you good health!

International Workshop on Realization of Low Carbon Society through Climate Change Adaption Closing Remarks

> President. Shinichiro OHGAKI National Institute for Environmental Studies

Ladies and gentlemen, now we have come to the close of the parallel workshop of TPM6. Firstly I would like to express my appreciation to all the speakers for your very useful and interesting presentations.

I think this parallel workshop on the Realization of Low Carbon Society through Climate Change Adaption was a very successful side activity of TMP6. We were able to familiarize ourselves with a great deal of information relating to output from modeling research, monitoring observation, technology and policy research from the relevant experts in our three institutes.

Generally speaking, this scientific evidence makes an essential contribution to policy making. However, separated and segmented evidence alone can only contribute on a relatively small scale to policies for achieving an actual low carbon society and low carbon world. This means that scientific researchers must integrate their scientific evidence in order to strengthen the dialogue between science and policy making.

This TPM is an extremely valuable and effective platform for this integration by allowing us a good opportunity to exchange information, thereby fostering international research collaboration.

Finally, I would like to express my sincere thanks onceagain to all the members of NIER and President YOON Seung-Joon for your excellent preparation and organization of the TPM6 during the past 3 days. I look forward to the continued strengthening of our friendship and collaboration at the next TPM hosted by CRAES.

Appendices

List of Participants

1. Delegation of China

Name	Position	Email (@craes.org.cn)	Tel(office)
Wei MENG	President	mengwei	86-10-84913883
Yun ZHOU	Director, International Cooperation Center	zhouyun	86-10-84915198
Yunjiang YU	Director, Science and Technology Division	yuyj	86-10-84915278
Fan MENG	Acting Director , Institute of Atmospheric Environment	mengfan	86-10-84918049
Chunlian XU	Assistant Director, Environmental Engineering Design Center	xucl	86-10-84935398-821
Shihai LU	Professor, Institute of Ecology	lv_sh	86-10-84914588
Yanping LI	Engineer, Center of Cleaner Production and Circular Economy	leeyp	86-10-84920936
Jiafeng FU	Assistant Professor, Climate Change Center	fujf	86-10-84915152

2. Delegation of Japan

Name	Position	Email (@nies.go.jp)	Tel(office)
Shinichiro OHGAKI	President	ohgaki	81-29-850-2300
Yoshifumi ASUOKA	Executive Director(Researcher)	yyasuoka	81-29-850-2301
Makoto SAITO	Director, Planning Division	m-saito	81-29-850-2302
Hideyuki SHIMIZU	Special Senior Researcher, Asian Environment Research Group	hshimizu	81-29-850-2451
Masaharu URAKAMI Chief, Public Relations and Planning Division		mmurakami	81-29-850-2304
Joanne HANDA	English Editor, Public Relations Ioanne HANDA and International Coordination, Planning Division		81-29-850-2827
Motoyuki IZUOCHI	Senior Researcher, Asian Environment Research Group	mizuochi	81-29-850-2496
Tatsuya HANAOKA	HANAOKA HANAOKA Section, Center for Global Environmental Research		81-29-850-2710
Tomoo OGURA	moo OGURA Senior Researcher, Climate Risk Assessment Research Section, Center for Global Environmental Research		81-29-850-2306

3. Delegation of Republic of Korea

Name	Position	Email (@korea.kr)	Tel(office)
Seung-Joon YOON	President	yoonsj	82-10-9959-1206
Ho-Seok SONG	Director, Research Planning Division	hssong	82-10-7923-0326
Hyun-Mi KIM	Senior Researcher, Research Planning Division	hmikim	82-10-2644-8683
Gil-Jong OH	Director, Resource Recirculation Research Center	gjoh0519	82-10-4331-8972
You-Deug HONG	Director, Climate Change Research Division	ydhong	82-10-9897-1165
Kyung-Hee CHOI	Director, Risk Assessment Division	nierchoi	82-10-4111-6850
* Yeon-Soon AHN	AHN Councilor, The Embassy of the Republic of Korea in China		86-10-8351-0860
Dong-Jin LEE	Senior Researcher, Resource Recirculation Research Center	dongj7	82-11-738-9020
Lim-Seok CHANG	Senior Researcher, Air Quality Research Division	ischang	82-10-5051-7161
Kyung-Hyun KIM	Senior Researcher, Water Pollution Cap System Division	khkim	82-10-2798-2468
Chang-Geun SONG	Senior Researcher, Climate Change Research Division	cksong	82-10-9991-4257
Hee-Young KU	Researcher, Research Planning Division (staff)	kheey83	82-10-2939-0212
Kyoung-Sun KIM	Sun KIM Researcher, Research Planning Division (staff)		82-10-2719-0631
June-Hyeong PARK	Editor, Research Planning Division (staff)	jony133	82-10-2773-1338
Sung-Hwa BAE	Editor, Research Planning Division (staff)	windy0805	82-10-9302-4800
Chang-Hyun SIN	Researcher, Research Planning Division (staff)	yjoy122	82-10-3616-3544
Kye-Yo LEE	Researcher, Research Planning Division (staff)	kyeyo2	82-10-2726-7896

- The Sixth Tripartite Presidents Meeting among NIER, CRAES and NIES -

November 25~27, 2009

Published by : Seung-Joon YOON, President

Edited by Ho-Seok SONG, Hyun-Mi KIM, Hee-Young KOO, Kyung-Sun KIM

December 10, 2009

Address: Research Planning Division, National Institute of Environmental Research Tel: 82-32-560-7011, Fax: 82-32-568-2036 Web site: http://www.nier.go.kr E-mail: hmikim@korea.kr