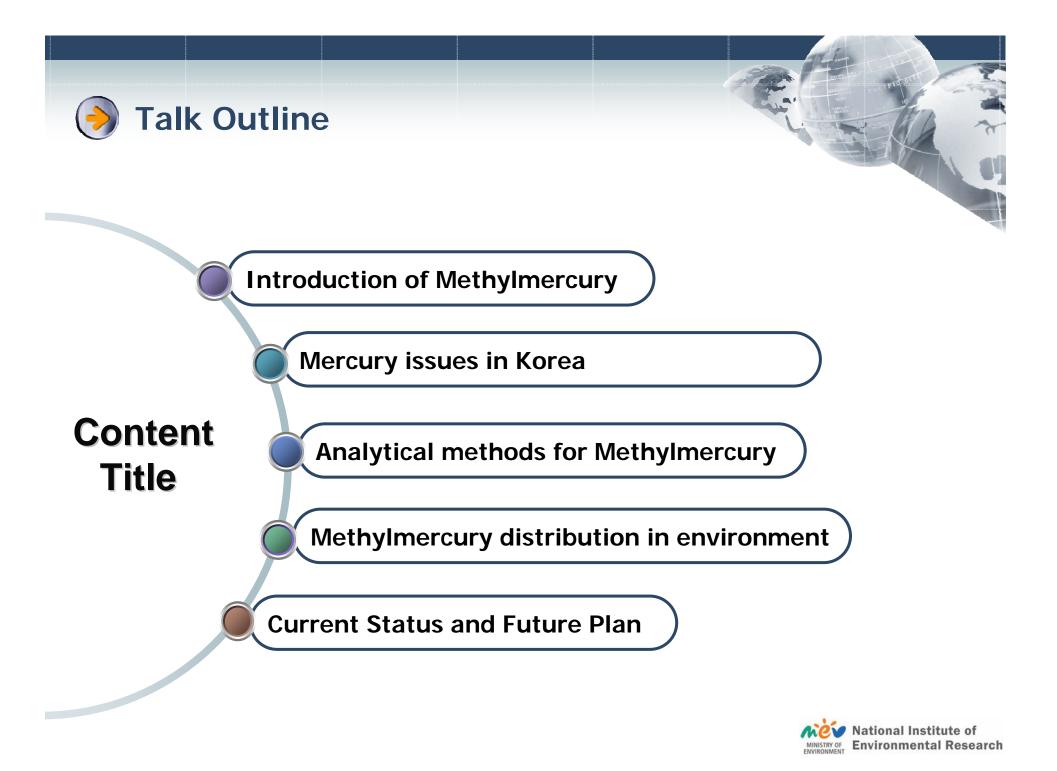
International Workshop on Environmental Contamination by Hazardous Substances



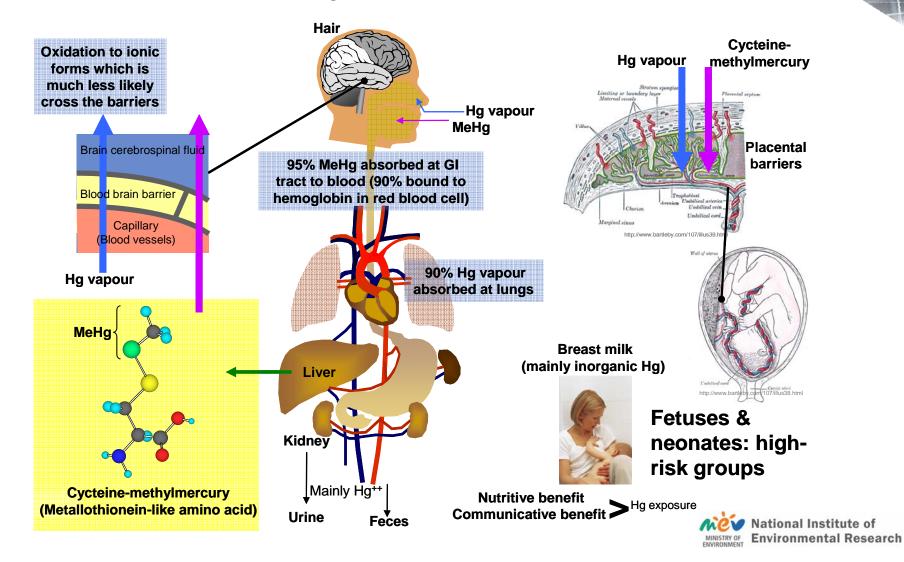


26, Nov. 2008. Young-Hee KIM Inorganic Analysis Research Division

National Institute of Environmental Research

Elemental Hg

- Coal combustion, volcano, gold mine
- Hg vapor is absorbed by lung & penetrates the brain causing brain damage. It also accumulates in the kidney & cause damages to kidney.
- Primary ore is cinnar bar , HgS.


Methyl mercury (MeHg)

- MeHg is bioaccumulated through food chains in aquatic systems.
- MeHg concentration in fish is the highest in aquatic systems fish Hg should be measured for aquatic environment assessment.

MeHg conjugates with cysteine, then easily absorbed as amino acids in the digestive tract & penetrate the brain / fetus - causing disorders in the brain and fetus.

History of Hg Toxicities

Acute poisoning: Lethal (earlier cases)

- Mad Hatters Syndrome': 19 & 20th century
- Acrodynia' in children: early 20th century
- Minamata Disease, Japan: 1950s: 5,000 people affected, Hg-laden fish, Hg used as a catalyst to produce acetaldehyde
- Iraq: 1972: 50,000 people affected, Hg-laden fungicide contaminated bread, 5,000 died

Chronic effects

Salonen et al 1995 Circulation

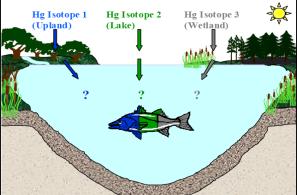
- In the second secon
- Coronary & cardiovascular death

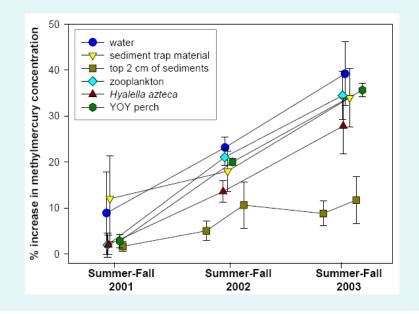
Hightower 2002 Environ Health Persp

Patients with hair loss, fainting spells and stomach upset, related to Hg in fish Minamata disease patient

Fisherman's hand

MINISTRY OF ENVIRONMENT Environmental Research


Mercury & Methylmercury in Environment


Environmental Responses to Hg loading

Harris et al. (2008)

Percent increase in methylmercury concentration due to the 120% extra loading of Hg(II) to the lake

METAALICUS PROJECT Mercury loading to a lake and its watershed

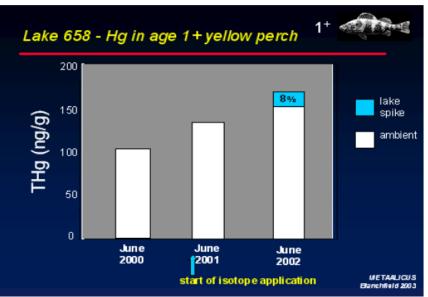
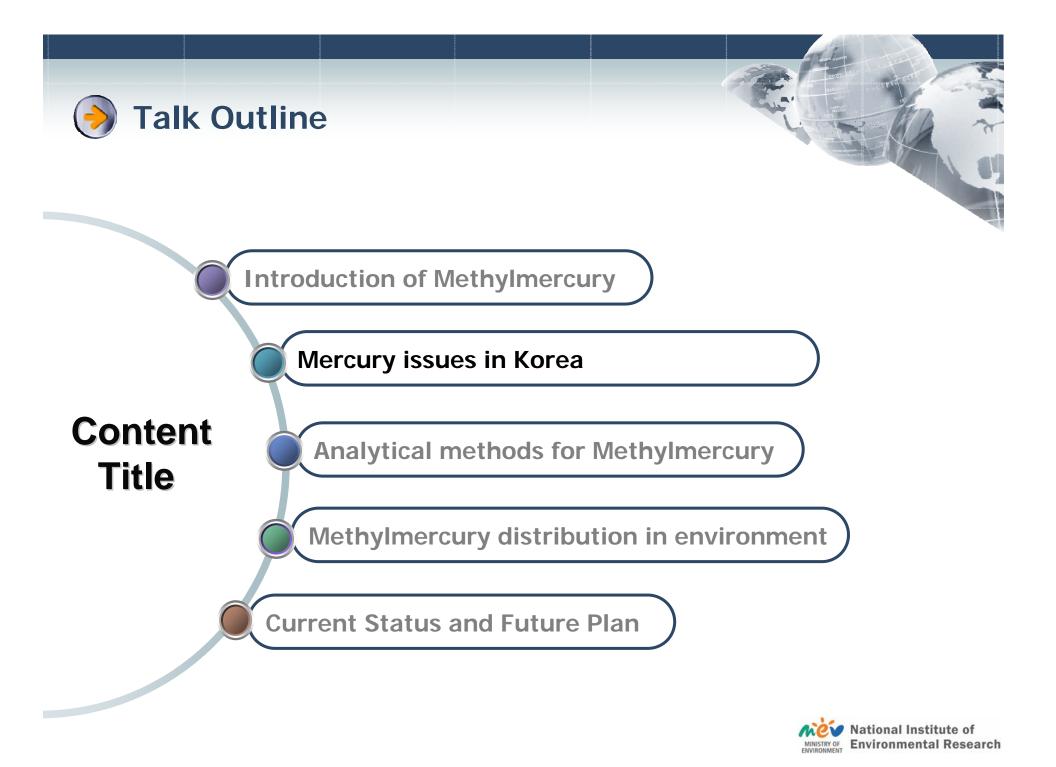



Figure 6. Mercury concentrations in age 1+ yellow perch in Lake 658, for ambient mercury and isotope added to the lake surface (Blanchfield *et. al*)

Mercury issues in UNEP

- UNEP's Global Mercury Partnership (From the 24th Governing Council)
- Artisanal and small scale gold mining, Chlor Alkali process, Coal combustion, Mercury Air Transport and Fate Research, Mercury containing product
- Expanding Area : Vinyl chloride monomer (VCM) Production, Cement Production, Non-ferrous mining and smelting, Reducing global mercury supply, Waste management
- Discussion for Adoption of <u>legally binding protocols</u>

Other international Activities

- Hemispheric Transport of Air Pollutants (HTAP Task Force/UNECE)
- Mercury in the Marine Environment (GESAMP/UNIDO)
- Mercury in Health Care program (WHO)

Current Mercury issues in Korea

High Exposures on Mercury

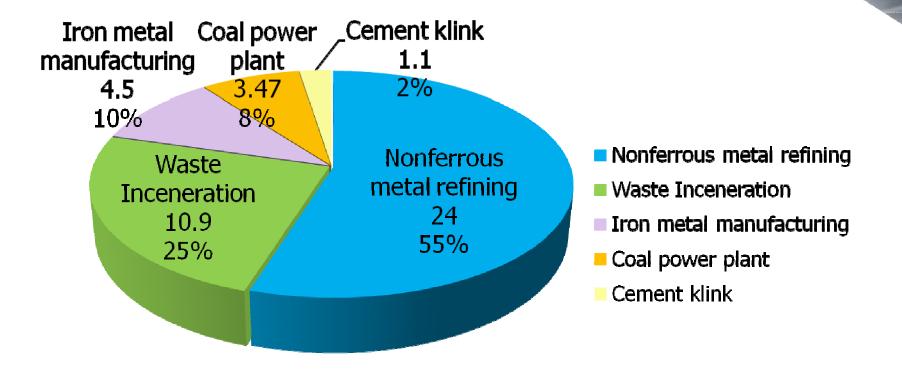
- Koreans' mercury concentration in blood : 4.34 ppb ('05. NIER) (USA : 0.83 ppb, Germany : 0.58 ppb)
- 1/3 of Korean : higher Hg concentrations compared to guideline level of USA EPA (RfD 5.8 ppb)
- High fish intake rate : 74~94 g/day

(USA : 17.5g/day \Rightarrow 0.3 ppm MeHg of fish: a Tissue Residue Criterion)

Total mercury emission : 52 ton/yr ('02, UNEP)

(USA :143, <u>China : 533, Japan : 30 ton/yr</u>)

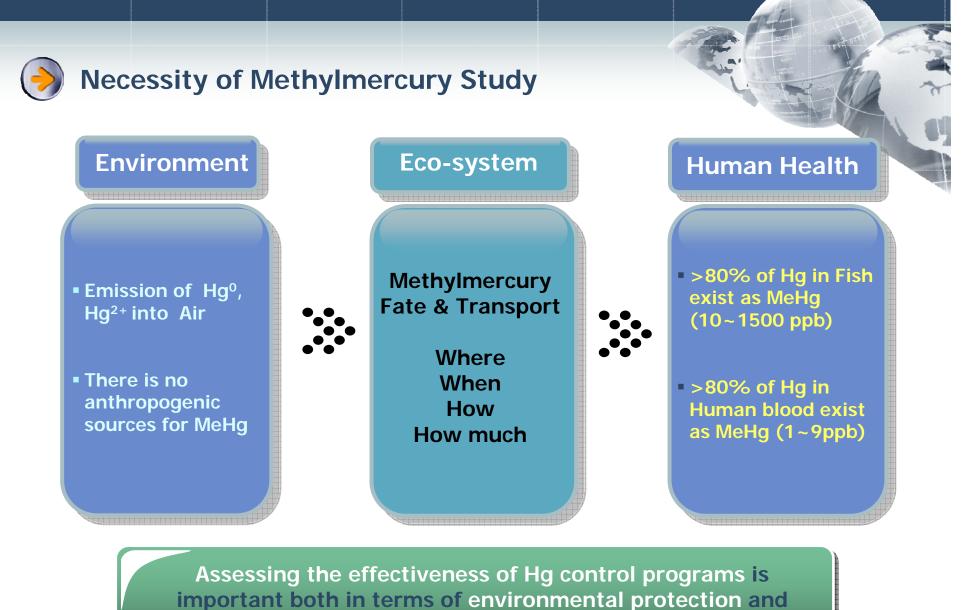
Frequent occurrence by long-range transport of Hg


Slobal Hg emission

0 La	rgest Global Emitters of H	g (Pacyna e	t al. 2006)
1 2 3 4 5 6 7 8 9 10	Country China South Africa India Japan Australia USA Russia Kazkhstan Korea Democratic Republic Saudi Arabia	Total (t) 604.7 256.7 149.9 143.5 123.5 109.2 72.6 43.9 46.0 40.7	aroque, Atmos Environ (2004)
	1 2 3 4 5 6 7 8 9	Country1China2South Africa3India4Japan5Australia6USA7Russia8Kazkhstan9Korea Democratic Republic	1China604.72South Africa256.73India149.94Japan143.55Australia123.56USA109.27Russia72.68Kazkhstan43.99Korea Democratic Republic46.010Saudi Arabia40.7

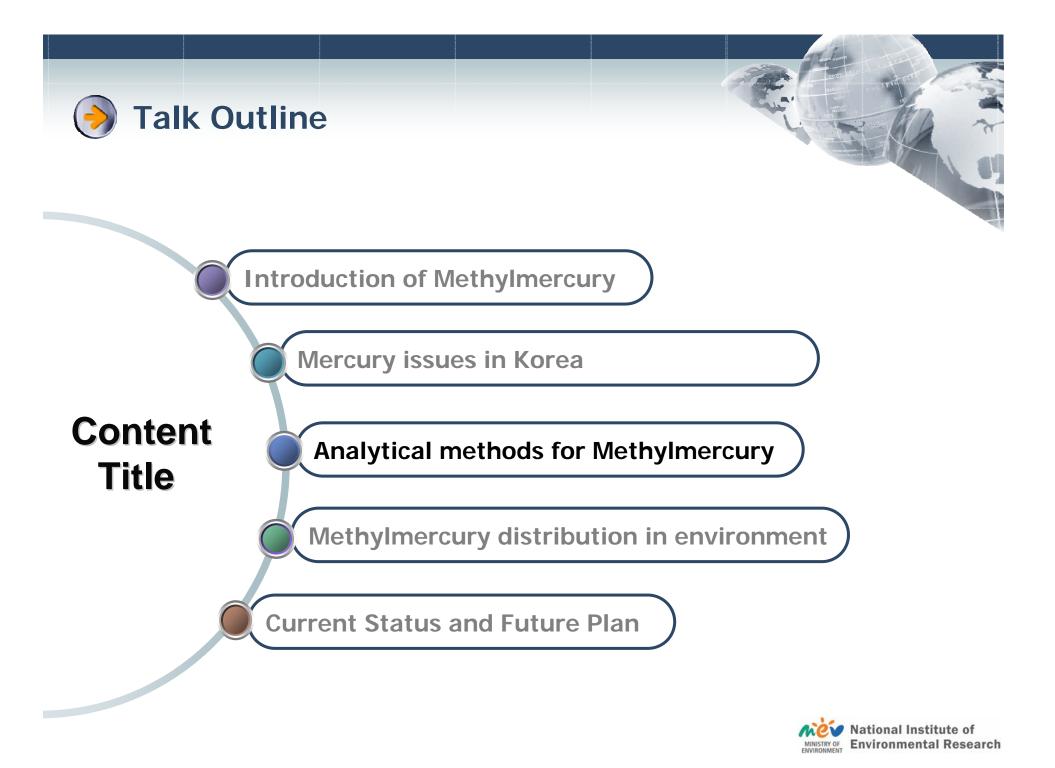
Mercury Emission Inventory of Korea

The contribution of mercury emissions varies depending on industrial characteristics in each country. (USA: Coal power plant (48%), China: Non-ferrous metal (45%), Japan: Waste incineration (37%))

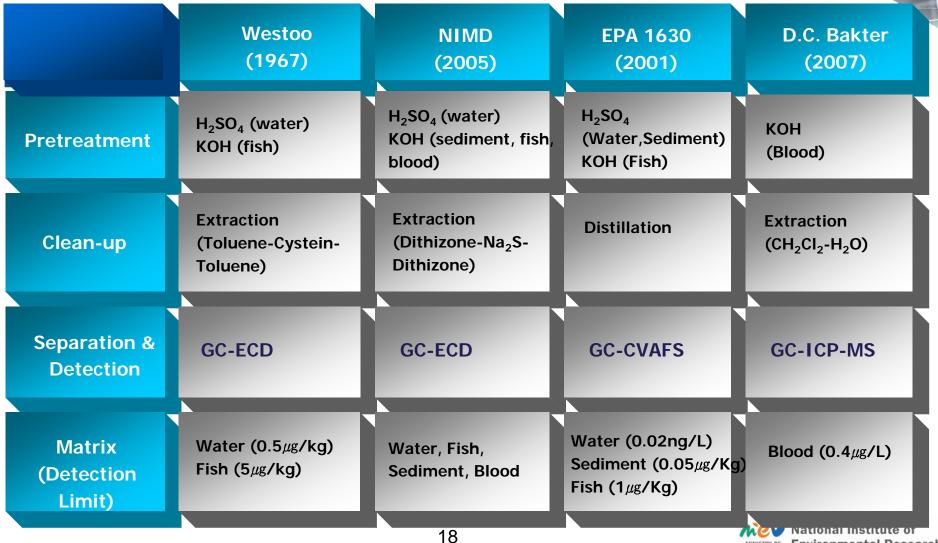

Mercury Management Policies in Korea

Battery

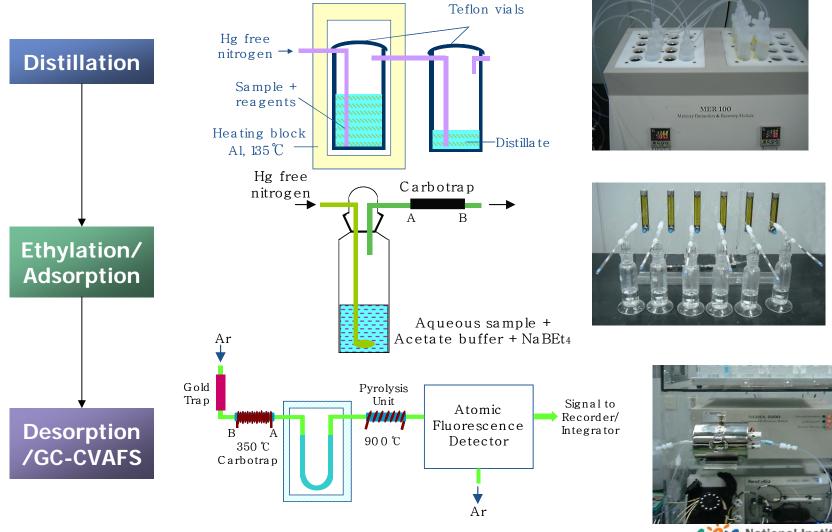
- Hg-containing battery can not be used more
- Fluorescent Lamp
- Hg content regulation: below 7 mg/per
- Recommendation for use of EL mark product
- Enforcement of Regulations for Hg Emission
- including also non-point source emission: 5 mg/Sm^3
- Coal-fired power plant, Incineration, boiler : 0.1 $\rm mg/Sm^{3}$
- Cement/ Steel manufacturing facility : 1 $\rm mg/Sm^{3}$
 - : after 2010 -> 0.1 mg/Sm³


good policy development.

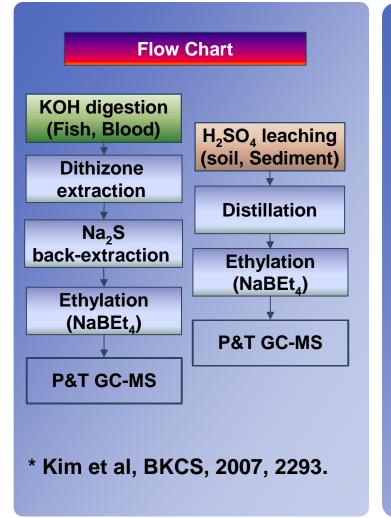
- Establishment of popularized MeHg analytical methods for various matrix
- Investigation of concentration level of T-Hg & MeHg in sediment, freshwater fish and human blood in S. Korea



Mercury & Methylmercury Background Level


ENVIORNMENTAL MATRIX	T-Hg BACKGROUNG LEVEL	MeHg BACKGROUND LEVEL	% MeHg
AIR (ng/m³)	1 ~ 170	0 ~ 40	<1%
FRESHWATER (ng/L)	0.2 ~ 15	0.04 ~ 0.8	<10%
SEAWATER (ng/L)	0.3 ~ 15	0.01 ~ 0.5	<5%
SOIL (µg/Kg)	8 ~ 406	0.3 ~ 23	<1%
ESTUARINE SEDIMENT (µg/Kg)	2 ~ 2200	0.06 ~ 70	<5%
RIVER SEDIMENT (µg/Kg)	10 ~ 750	0.3 ~ 30	<5%
FRESHWATER FISH (µg/Kg)	30 ~ 330	28 ~ 310	80%<
SEAWATER FISH (µg/Kg)	10 ~ 1300	10 ~ 1240	80%<
HUMAN BLOOD (μg/Kg)	1 ~ 40	Most of MeHg	80%<
HAIR (μg/Kg)	1000 ~ 5000	Most of MeHg	80%<

Currently used analytical methods for MeHg


Scheme of Distillation & GC-CVAFS method

National Institute of Environmental Research

Methylmercury method using P&T GC-MS

Purge & Trap Parameter

Тгар	Tenax TA, Supelco
Absorb	40 °C, 40 mL/min, 15 min
Desorb	200 °C, 300 mL/min, 3 min
Bake	230 °C, 300 mL/min, 5 min
GC Parameter	
Injector	220 ℃, splitless
Column	DB5-MS (30 m $ imes$ 250 μ m $ imes$ 0.25 μ m)
Carrier gas	He, 1mL/min
GC program	40℃(4 min) to 280℃(5 min) at 15℃ min ⁻¹
MS Parameter	
SIM mode M	eHg m/z 202,217,246

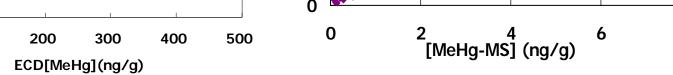
Method Verification using CRMs (1)

Methylmercury Concentrations (µg/g) in Sediment CRMs

CRMs	Certified Value	Determined Value		RSD (%)	Recovery (%)
BCR CC 580	75.0 ± 4.5	GC-MS	74.5±10.6	14.2	85 ~ 108
(n = 7)		GC-CVAFS	73.1±10.1	13.8	83 ~ 111
IAEA 405		GC-MS	5.27±0.28	5.5	85 ~ 108
(n=7) 5.49 ± 0.53	GC-CVAFS	5.07±0.57	11.3	81 ~ 111	

Methylmercury Concentrations (#g/g) in Fish CRMs							
CRMsCertified ValueDetermined ValueRSD (%)Recovery (%)							
IAEA 407	0.20 ± 0.012	GC-MS	0.19 ± 0.016	3.9	85 ~ 95		
(n = 7)		GC-ECD	0.20 ± 0.022	5.7	92 ~ 101		
BCR 463	2.83 ± 0.16	GC-MS	2.89 ± 0.26	4.3	98 ~ 108		
(n=7)		GC-ECD	2.76 ± 0.32	5.9	91 ~ 107		

Method Verification using CRMs (2)

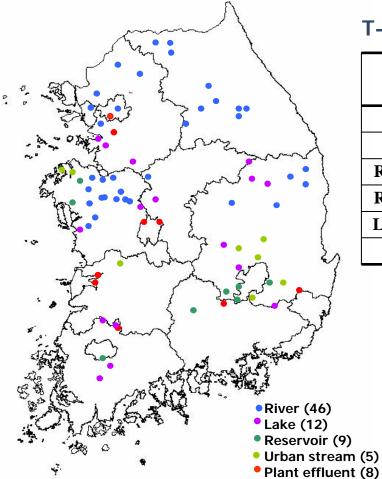

Met	Methylmercury Concentrations (ng/g) in Blood CRMs					
Materials	Certified Value	Determined Value	RSD (%)	Recovery(%)		
SRM 966 (n = 5)	16.4 ± 1.4	16.6 ± 1.6	4.9	93 ~ 105		
M 0605 (n=3)	7.1* (4.6 ~ 9.5)	5.8 ± 0.8	3.3	86 ~ 93		
M 0618 (n=3)	26.3* (20.0 ~ 32.3)	23.2 ± 1.6	6.4	79 ~ 91		

 The commercially available blood samples were obtained from Centre de Toxicologie du Québec (Québec, Canada). Data from the total mercury analysis and the materials were spiked with methylmercury.

Comparison of P&T GC-MS method P&T GC-MS Vs GC-CVAFS GC-ECD Vs P&T GC-MS (Sediment) (Freshwater Fish) 500 7 = 0.9063x + 10.587y [MeHg-AFS] (ng/g) $R^2 = 0.8935$ 400 MS[MeHg] (ng/g) 300 200 y = 0.7486x + 0.17100 $R^2 = 0.6237$ 0 0

100

0

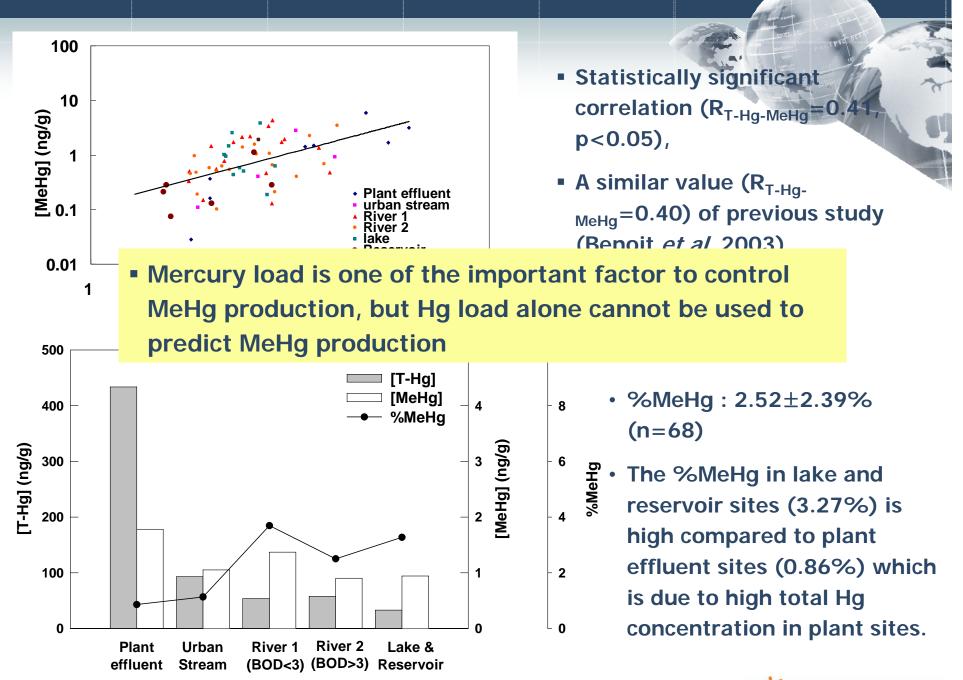


8

Methylmercury in Sediment

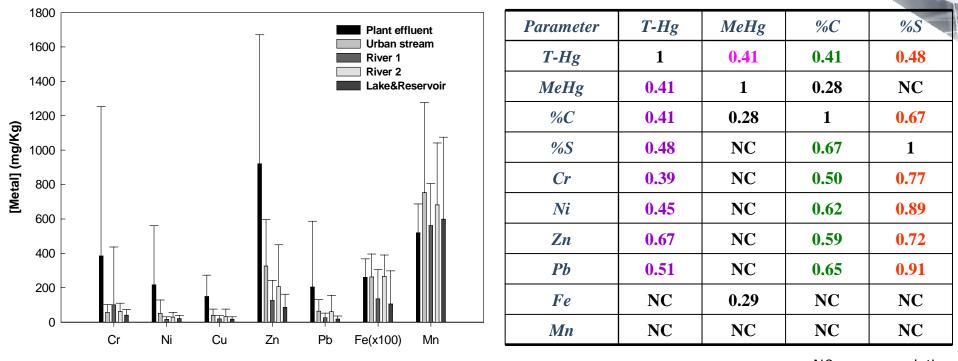
T-Hg & MeHg in Sediment (ng/g, dry weight)

Sampling sites	T-H	Ig	MeHg [GC-MS]		
Sumpting sites	Average	Range	Average	Range	
Plant effluent	433.4 ± 568.9	10.1~1564	1.78±1.97	N.D.~5.95	
Urban stream	92.8±114.4	7.1~282.6	1.06 ± 1.20	N.D.~2.78	
River 1 (BOD<3)	53.5 ± 62.4	2.7~251.6	1.37 ± 1.15	N.D.~4.34	
River 2 (BOD>3)	57.4 ± 74.8	3.6~299.0	0.90 ± 0.81	N.D.~3.44	
Lake &Reservoir	27.7 ± 20.9	2.4~70.8	0.94±0.99	N.D.~3.79	
Total	98.4±232.7	2.4~1,564	1.16 ± 1.17	N.D.~5.95	


* MDL : $0.05 \text{ ng} \cdot \text{g}^{-1}$

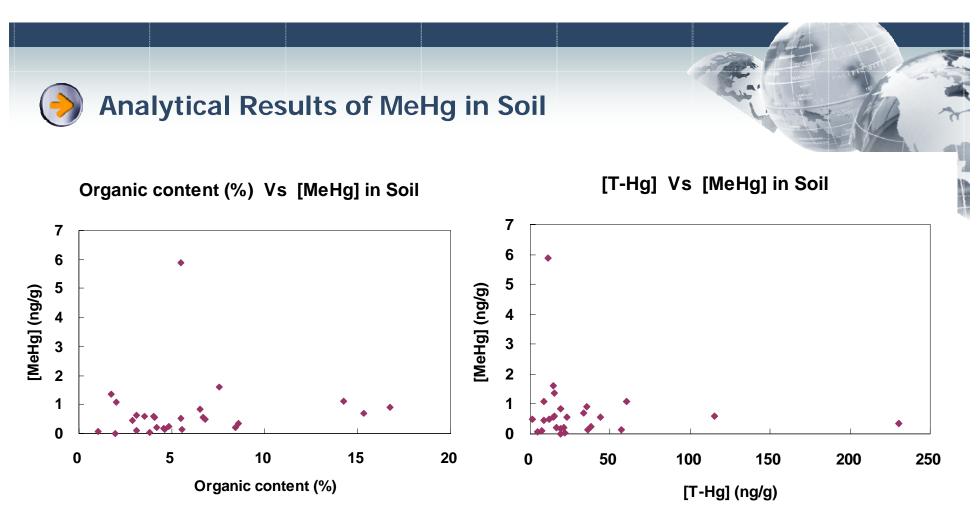
• Comparison of MeHg in Sediments

Sampling sites	MeHg(ng/g)	Ref.
Florida Everglades, USA	0.03~10.18	Cai et al. (1996)
Guizhou, China	1.27~22.5	Horvat et al. (2003)
Minamata, Japan	0.3~20.0	Haraguchi (2000)
Mobile Alabama river basin, USA	N.D~3.8	Warner et al. (2005)


Sediment sampling sites (Jun. ~ Sep. 2007)

National Institute of MINISTRY OF Environmental Research

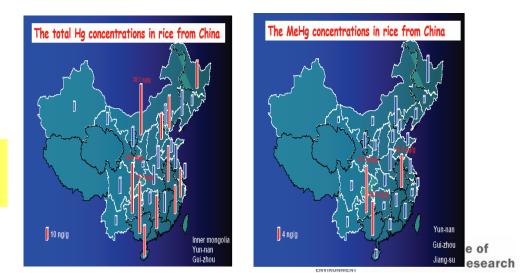
Sediment metal concentrations & correlations



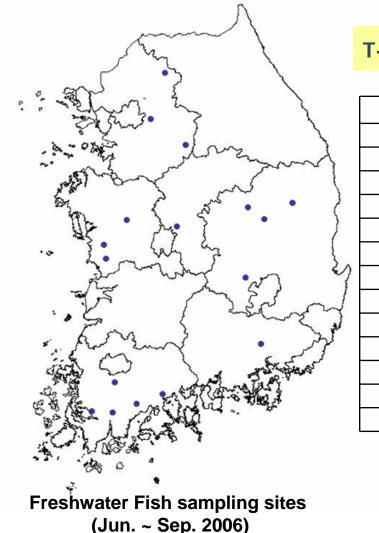
a. NC = no correlation

- Total metal concentrations of plant effluent sites were also relatively high compared to those of other sites
- With T-Hg, all parameters showed significant correlation, but with MeHg, no correlation were found.

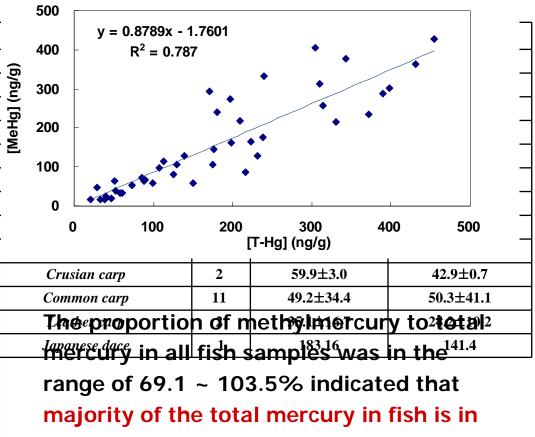
- Among 43 of soil samples, in only 25 samples MeHg were detected.
- Total mercury concentrations of soil were in the range of 1.27 ~ 230.40
 ng·g⁻¹ (mean 34.3 ng·g⁻¹) and methylmercury concentrations were in the range of N.D. ~ 5.88 ng·g⁻¹ (mean 0.78 ng·g⁻¹) (n=25).


THg and MeHg in crops from Hg mining areas (dw ng/g) in Gui-zhou (Qiu & Feng, 2005, Appl Geochem)

	Species	Min	Max	Mean	n	National Advisory
	THg	9.0	572	143		Limit- MeHg
Corn	MeHg	0.3	1.3	0.7	11	
	THg	9.0	1408	234		20
Rice	MeHg	1.1	144	20.1	25	
Vegetable	THg	103	1156	415		
-	MeHg	0.4	4.2	1.9	17	10

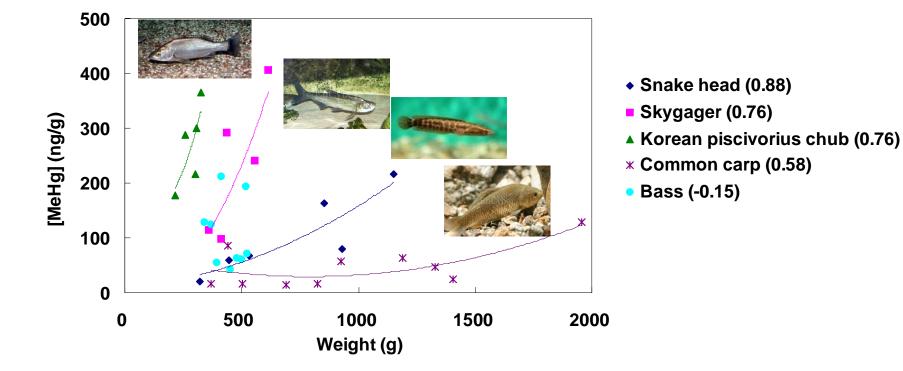

MeHg in soil samples from Hg mining areas (dw, ng/g)

Soil	Range	Mean
Cornfields	0.091-2.3	0.77
Paddies	1.0-20	4.4

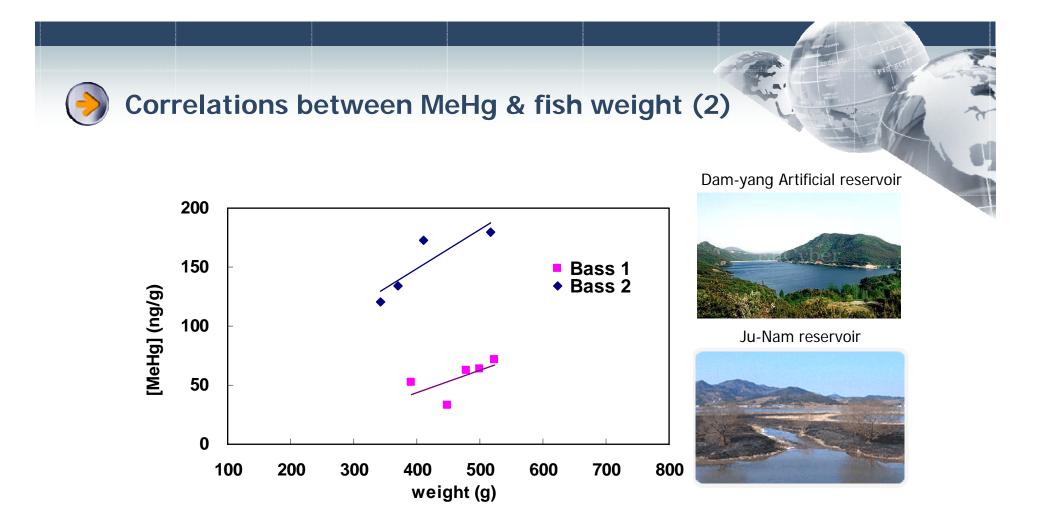

Is rice safe for consumption? (GB Jiang, 2006)

Methylmercury in Freshwater Fish

T-Hg & MeHg in Freshwater fish (ng/g, wet weight)

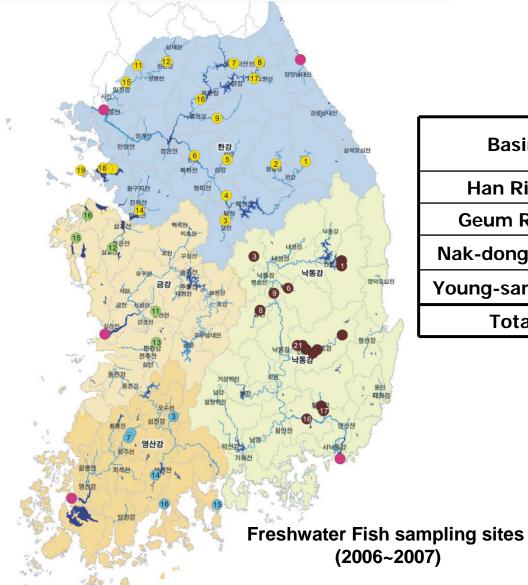


the form of methylmercury.



Correlations between MeHg & fish weight (1)

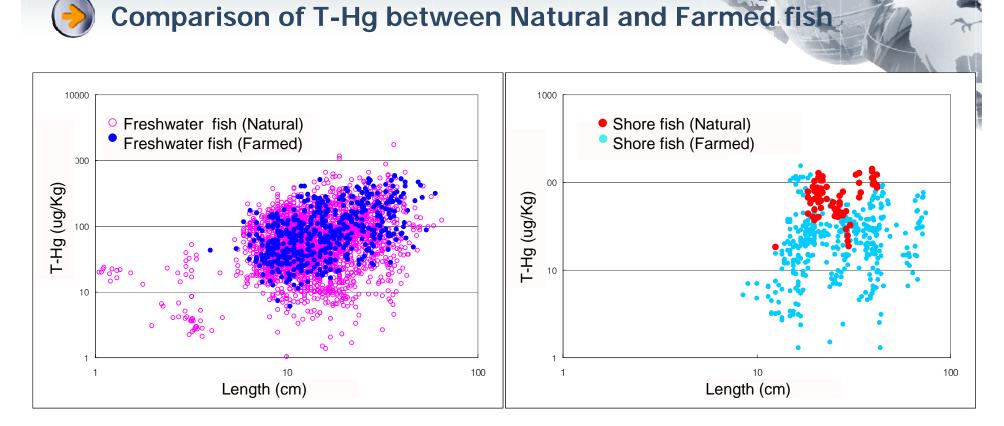
- MeHg concentrations and accumulation rates are increased with trophic level and different species show different patterns.
- MeHg concentrations are significantly correlated with fish body weight (R = 0.58 ~ 0.88, p<0.05) except Largemouth bass.



• Two groups were collected from different locations, i.e. Bass 1 from Ju-Nam reservoir and Bass 2 from Dam-Yang artificial reservoir, which might imply the difference of food availability, methylmercury concentrations in the prey and water chemistry.

National survey for Mercury in freshwater fish

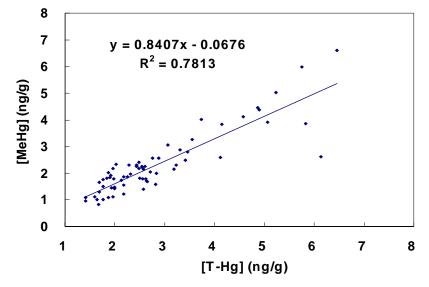
Basin	No of sites	No of species	No of samples
Han River	18	40	905
Geum River	5	17	226
Nak-dong River	15	33	286
Young-san River	4	24	418
Total	45	58	2,004



T-Hg in Freshwater fish (1)

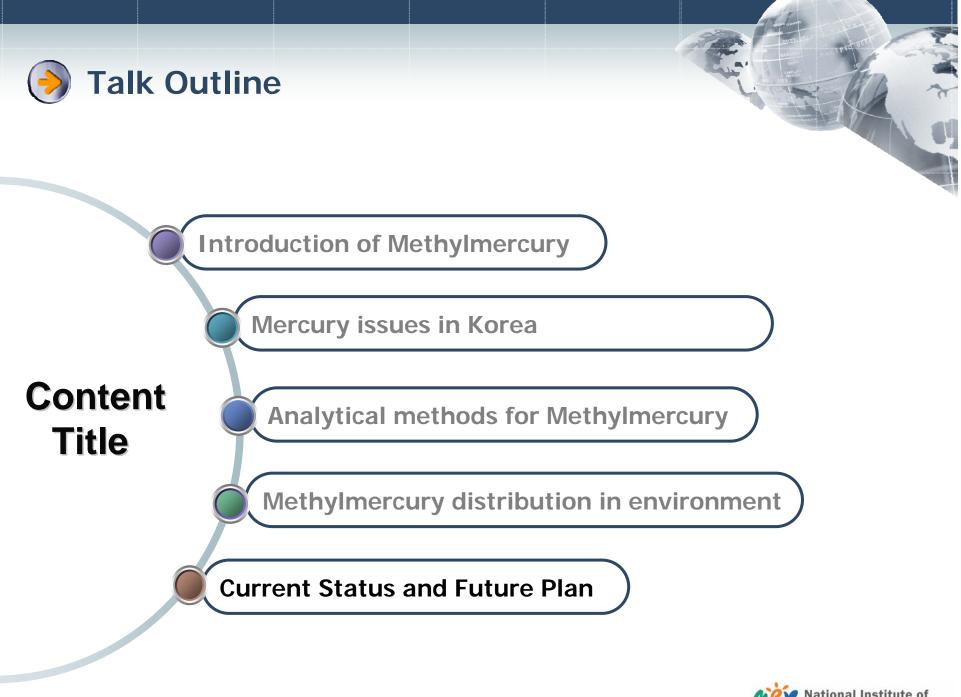
Fishes	n	Longth	T-	— %МеНд	
r isnes	n	Length	Average	Range	
mandarin fish	65	18.3 ± 4.1	173.1 ± 106.9	26.8 ~527	82.0
catfish	79	29.1 ± 7.2	136.2 ± 220.4	18.9 ~1527.6	74.5
snakehead	16	39.3 ± 8.8	109.2 ± 104.7	28.2~414.9	78.9
skin carp	41	20.3 ± 8.1	90.2 ± 77	17.3 ~ 336.7	72.7
Korean dark sleeper	48	11.0 ± 2.9	85.7 ± 99.8	14.5 ~ 480.4	78.8
Korean bullhead	143	15.0 ± 3.5	80.9 ± 63	3.9~ 428.7	75.4
striped shinner	80	10.6 ± 1.8	80.1 ± 49.1	7.5 ~ 279.6	88.1
Coreoperca herzi	87	10.3 ± 2.4	73.3 ± 71	7.4 ~ 424.9	74.4
long-nosed barbel	31	13.4 ± 1.4	66.1 ± 37.9	12.1 ~ 139.5	78.5
korean piscivorous chub	57	11.5 ± 3.5	60.8 ± 39.3	12.5 ~ 153.7	77.1
pale chub	160	10.3 ± 2.1	57.6 ± 35.4	6.9 ~ 189	85.1
crucian carp	226	16.1 ± 6.0	55.4 ± 50.9	4.9~446.2	83.9
largemouth bass	29	15.8 ± 7.6	50.6 ± 32.8	21.5~ 164.4	79.1
black bullhead	57	13.4 ± 4.0	44.6 ± 36.1	9.9~ 274.8	78.9
common carp	68	27.7 ± 11.3	38.8 ± 26.1	4.5 ~133.2	99.8
blue gill	88	9.8 ± 3.1	35.3 ± 15.8	9.3~ 73	82.7
goby minnow	44	13.7 ± 1.8	32.5 ± 19.1	3.8 ~ 89.5	83.0
Goby	104	18.2 ± 3.4	13 ± 11.2	0.4~ 55.8	95.4

Methylation Triggered by Fish farming practices?


-Methylation triggered by moderate levels of organic enrichment through fish farming (Bay of Fundy, Vancouver) (Sunderland et al, 2006)

-Elevated levels of Hg in demersal rockfishes near salmon farms due to a combination of higher rockfish trophic position and higher Hg levels in prey near farms (coastal British Columbia) (Debruyn et al, 2006)

Methylmercury in Human blood



Mercury exposure study in children is of interest because of continuing neurobehavioral development during this life stage.

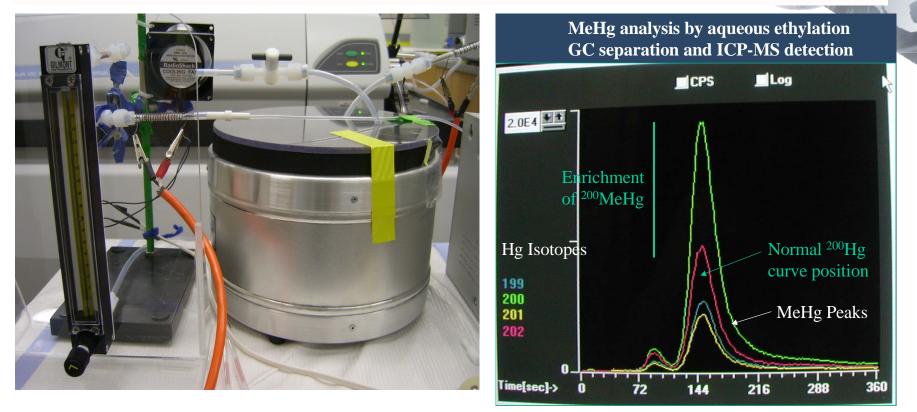
The difference between adults and children may be due to differences in toxicokinetics, dose frequency, body size etc.

Mercury levels in children and adults in various regions

Author	Region	Sample	Mean of T-Hg (µg·L ⁻¹)
This study	Republic of Korea	85 children aged 10-12 years	2.57 (2.01 for MeHg) (4.34 for adults)
Schober et al. 2003	USA	705 children aged 1-5 years 1709 adults aged 16-49 years	0.34 1.02
Seifert et al. 2000	German	712 children aged 6-14 years 3958 adults aged 25-69 years	0.49 0.77
Batáriová et al. 2006	Czech	333 children aged 8-10 years 1188 adults aged 18-58 years	0.42 0.89

MINISTRY OF Environmental Research

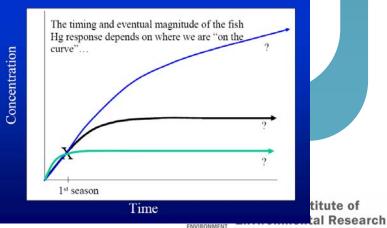
- Tae-An coal power plant
- Studied Reservoir sites
- Control site (Baegreong-do)
- Power Plants


Sites	TGM (ng/m ³) (n=7)	
Tae-An	3.6	
Anmyeon-do	4.5	
Baegyeong-do	1.2	

Sampled during 2008. Aug. ~ Sep. Global level 1.5~1.8 ng/m³ (Landis et al. 2002)

Sites	Basin Area (ha)	Capacity (x10 ³ m ³)
Ban-kye	287	446.6
Chang-ki	94	309.1
Shin-doo	138	182.1

Measuring Hg Methylation and MeHg Demethylation Potentials Using Stable Isotopes



Advantages:

- 1. Lower concentration can be spiked
- 2. Both methylation and demethylation can be simultaneously measured
- 3. Short-term assays are possible (hours) allowing measurement of actual initial rates
- 4. Steady state concentrations can be related to rate constants, assuming first order processes

- Data gap concerning Hg & MeHg concentrations in different ecological compartments, speciation, bioavailability & toxicity.
- Intensive & Long-term Hg & MeHg monitoring are needed to access current status and to evaluate the effectiveness of Hg reduction policies.
- Continuing investigation for Hg & MeHg exposure on children and women & Establishment of fish consumption advisories to protect at risk population.

Thank You !

