

Determination of Chemicals Released from Single Use Low Density Polyethylene Plastic Bags

<u>Ei Ei HTWAY¹</u>, Aye Thida HTUN¹, Thiri HLAING¹, Moh Moh LWIN¹ and Hla Myoe MIN²

1-Department of Medical Research (Pyin Oo Lwin Branch), Myanmar

2 - University of Mandalay, Myanmar

Introduction

The use of plastics has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. Plastics are made with various types of polymer, including Low Density Polyethylene (LDPE). But plastic can contain smaller chemical molecules that are free to migrate into food during contact time and thereby cause health problems. Some additives used in plastic are even carcinogenic or tumorigenic. In Myanmar, many foods are packaged in single use LDPE plastics including fresh meat, vegetables, fast foods, and even some hot foods in daily life. Therefore the present study was aimed to determine the chemicals released from single use LDPE plastic bags that were used in direct contact with hot foods.

Aim

The present study was aimed to determine the chemicals released

from single use LDPE plastic bags that were used in direct contact with hot foods in Myanmar.

Methods

Fourier Transform Infra Red (FTIR) spectroscopy analysis was done for confirmation of LDPE.

 Extraction of chemicals from LDPE plastic bags was carried out by reflux extraction method using four types of solvents (distilled water, ethanol, chloroform and olive oil).

The individual chemicals released from the sample were determined by Gas Chromatography-Mass Spectrometry (GC-MS) with NIST library.

 Elemental composition of LDPE polymer was analyzed by Wavelength Dispersive X-ray Fluorescence (WDXRF).

Chromatogram (Zoom) LDPE EXOH(DEEH) 24.11.17) C/GCMSsolution/Data/Preject1/LDPE ExOH 2(DEEH 24.11.17).apd

Figure(2) GC-MS Spectrum of ethanol extract of LDPE plastic bags

Table(2) Relative abundance of elements in LDPE plastic bag

Flomonte	Relative Abundance	Flomonte	Relative Abundance	
Elements	(%)	Elements	(%)	
Ti	0.0587	Cr	0.0029	
Al	0.0237	Sr	0.0026	
К	0.0123	Fe	0.0025	
Si	0.0118	Ag	0.0019	
Mg	0.0113	S	0.0014	
Cl	0.0093	Р	0.0006	
Ca	0.0047	Zn	0.0005	
Cu	0.0032	Mn	0.0002	

							Toluene	1.35
	Others (5 no.)	<1.0	Others (9 no.)	<1.2	Others (12 no.)	<1.0	Others (34 no.)	<1.0
* A% is	relative area perce	ent of ide	entified compoun	d				

Conclusion

The study revealed that tested single use LDPE plastic bags are containing of chemicals that are toxic to human beings such as toluene, ethyl benzene, methyl oxirane, supraene and some type of aldehyde, and even carcinogenic dioxin-like substance such as 2,3-dihydro-1,4-dioxin.

Contact: Dr. Ei Ei Htway (eieihtwaydmr@gmail.com, Ph.no. +959402661062)

Source: http://www.bepakt.com/plastic.problems

5th NIES International Forum, 21-23 January 2020