

Distribution and physicochemical properties of particulate matter in swine confinement barns

Dan SHEN, Sheng WU, Zhaojian LI, Qian TANG, Pengyuan DAI, Yansen LI, Chunmei LI* College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China

Background and Aim

Air pollutants accumulated in confined livestock barns could impact the health of animals and staff. PM and NH_3 concentrations are typically high in enclosed livestock houses.

This present study aimed to

- investigate the distribution of PM in different size fractions
- detect levels of NH_3 in a nursery (HN) barn and a fattening (HF) barn
- analyze the physicochemical properties of $PM_{2.5}$

Method

Concentrations of PM were measured using a DustTrak^{II} model 8532 aerosol monitor (TSI Inc., Minnesota, USA).

Concentrations of NH₃ were measured using a JK40-IV portable gas detector (Ji Shun'an Technology Co., Ltd., Guangdong, China).

Ultrastructural observation was conducted using a SU8010-type field scanning electron microscope (SEM, Hitachi, Tokyo, Japan).

PM and NH_3 concentrations were measured at eight points (Fig 1.) from 07:00 to 19:00 at 2-h intervals for 6-day continuous monitoring in each barn.

Fig 1. Plan view (A) and Schematic cross-section (B) of the barns with eight measuring points indicated.

Fig 2. Comparison of PM and NH₃ inside and outside barns (A) as well as the variation of PM concentration before and after feeding (B).

PM and NH₃ inside the barns were higher than outside; Feeding induced PM increased

 Pig barn is an important contributor of air pollutants to the ambient environment.

AB, particles from the HN barn; CD, particles from the HF barn; A (×2 000); B (×10 000); C (×20 000); D (×40 000). **Fig 3. Microscopic morphology of fine particulate matter (PM_{2.5}) collected in the pig barns.**

PM_{2.5} in the barns were supposedly from feed, manure, blowing dust, mineral particles

- roughly spherical and irregularly shaped particles feed, manure
- loose, smooth surfaces of the strip-, rod-, bar-shaped mineral, dust

Note: The diagram is not drawn to scale. The measuring points are shown as numbers. ① forepart; ② height of 0.5 m; ③ height of 1 m; ④ height of 1.5 m; ⑤ back; ⑥ east; ⑦ west; ⑧ outside.

Results and Discussion

Table 1. Spatial differences of particulate matter (PM) and ammonia (NH₃) concentrations in nursery (HN) and fattening (HF) barns.

		HN ba	arn		HF barn					
Point		PM (mg·m⁻³)		NH ₃		NH ₃				
	TSP	PM ₁₀	PM _{2.5}	(mg∙m⁻³)	TSP	PM ₁₀	PM _{2.5}	(mg∙m⁻³)		
1.5 m	0.787±0.1ª	0.473±0.1	0.222±0.07	12.7±3	0.829±0.3 ^{ab}	0.360±0.1	0.153±0.07	40.3±9ª		
1.0 m	0.739±0.1 ^{ab}	0.445±0.1	0.217±0.08	11.9±3	0.840±0.3 ^{ab}	0.347±0.1	0.152±0.07	40.9±8ª		
0.5 m	0.723±0.1 ^{abc}	0.401±0.1	0.204±0.09	10.5±2	0.760±0.3 ^{ab}	0.351±0.1	0.144±0.07	41.0±8ª		
Forepart	0.515±0.2 ^{bc}	0.334±0.08	0.203±0.1	13.6±4	0.884±0.4ª	0.377±0.1	0.175±0.09	37.7±8 ^{ab}		
Rear	0.475±0.2°	0.312±0.1	0.201±0.1	9.87±4	0.618±0.1 ^b	0.272±0.06	0.120±0.06	27.2±5 ^{cd}		
East	0.634±0.2 ^{abc}	0.385±0.1	0.203±0.08	13.2±3	0.771±0.2 ^{ab}	0.332±0.2	0.136±0.07	31.7±6 ^{bcd}		
West	0.576±0.2 ^{abc}	0.366±0.1	0.216±0.1	13.5±5	0.734±0.2 ^{ab}	0.329±0.1	0.128±0.06	27.1±6 ^d		

Note: The values are shown as the mean \pm SEM based on 7 measurements per day for 6 d at each position. Values followed by different superscripted letters are significantly different between positions (*P* < 0.05); values followed by the same letters show no significant differences.

PM and NH₃ concentrations at rear were the lowest; TSP and NH₃ concentrations in HF barn were higher than HN barn

- Intake windows through which the fresh air entered were located in the rear of the barns, fresh air diluted the PM and NH₃ concentrations.
- The PM and NH₃ accumulated more easily in the middle and forepart of the barn.
- More feed was provided and more manure was excreted in HF barn.
- Larger PM fractions originate mainly from manure and feed.

Fig 4. SEM-EDS of particle samples (A). SEM micrographs were digitized and primary feature data measurements were made (B).

Table 2. Chemical composition of PM expressed as mass percentage

Spec- trum	С	N	0	Na	Mg	Si	Р	К	Са	Fe	Zn
1	18.5	5.96	45.0	0.810	3.98	15.8	9.69	0.230	-	-	-
3	21.4	-	40.2	0.940	-	30.4	-	0.370	0.800	1.24	4.64
4	35.8	8.99	37.6	1.31	0.200	15.4	-	-	0.00	0.730	-
5	31.4	10.8	37.7	1.05	0.00	19.1	-	-	-	-	-
Mean value	24.9	7.83	40.3	1.08	1.34	19.8	8.83	0.210	0.320	0.920	5.45

PM_{2.5} in the barns were supposedly from feed, manure, blowing dust, mineral particles

- The elements C, O, and Si are the major constituents of feed and skin particles.
- Dust blown from the soil is also enriched in the elements O and Si.
- PM_{2.5} form pig barns was mainly organic matter.

Conclusion

- The air quality at the rear of the barns was the best; the air quality outside was better than inside.
- Feeding could increase the PM concentrations.
- It was speculated that the $PM_{2.5}$ in the barns were feed, manure, blowing dust, mineral particles and smoke from outside.

Future Plan

- To detect the specific component of $PM_{2.5}$, including OC, EC, metal and ions as well as the content of microorganism and endotoxin.
- To research the mechanism of lung tissue injury caused by PM_{2.5}. No conflict of interest