Numerical Simulation on Drainage Capacity Loss at a Bar Screen Blocked by Wastes in a Canal

23rd/January/2019

○Kosuke Nakamura¹ · Rawit Thaweesub³

Noppharit Sutthasil¹
 Chart Chiemchaisri²

•Tomonori Ishigaki¹•Kazuto Endo¹•Masato Yamada¹

¹National Institute for Environmental Studies(Japan)

²Kasetsart University(Thailand)

³RANGSIT University(Thailand)

Contents

Backgrounds -Flood in urban cities-

Under what condition slit-like structures are clogged?

How much water flow is interrupted by clogging?

Tool -Numerical model-

Method -Coupled two models-

Method -Canal-

Evaluation of clogged area over slits

Area where is clogged by wastes is evaluated using a picture taken from a camera at downstream. Area is calculated from **pixels occupied by wastes**.

Condition -Composition of wastes-

THUNG KHRU

เขต ทุ่งคร

ġ

30 40 20

Condition - Properties of wastes-

Condition - Composition-

	Slope [%]		e	Wood (Timber) [pcs]	Plastic (Bottle) [pcs]	Foam [pcs]
Control-2	2			-	-	-
Control-5	5			-	-	-
Control-10		10		-	-	-
WT25-5		5		25	-	-
PB50-5	5			-	50	-
F15-5	5			-	-	15
WT1-2/5/10	2	5	10	1	-	-
WT9-2/5/10	2	5	10	9	-	-
F1-2/5/10	2	5	10	-	-	1
Mix-2/5/10	2	5	10	6	6	3

Results -Control 5%-

Results -Wood(Timber) 25-5%-

Results -Plastic(Bottle) 50-5%-

) m/s _____ 2 m/s

Results - Foam 15-5%-

Results -Blockage effect-

	Average flow velocity [m/s]	Clogged?	Blockage effect [%]
WT25-5	0.42	Yes, WT23	55
PB50-5	0.93	Passed	-
F15-5	0.93	Floated	0
WT1-2	0.27	Yes, WT1	10
WT1-5	0.88	Yes, WT1	6
WT1-10	1.90	Passed	-
WT9-2	0.23	Yes, WT8	23
WT9-5	0.58	Yes, WT8	38
WT9-10	1.89	Passed	-
F1-2	0.30	Floated	0
F1-5	0.94	Floated	0
F1-10	1.90	Passed	-
Mix-2	0.24	Yes, WT6	20
Mix-5	0.66	Yes, WT6	30
Mix-10	1.89	Floated	1

Results -Clogged area-

Discussion

Condition when slit-like structures are clogged

·Waste > slit opening

Blockage effect on canal water flow by clogging

Blockage effect **55%** by **36% clogged area**.

Blockage effect and clogged area had linear relationship (R²=0.94). On the other hand, blockage effect and number of wood timbers on slit bars and had less relationship (R²=0.74). Even first layer of clogging can have large effect.

Concerning future precipitation

Our present model is for a short canal with bar screen. •Blockage effect is utilized in the following model.

Our future numerical model will be...
Connected to future precipitation model
Covers larger area (possibly a city)
Analyse a network of multiple canals during a precipitation event

This model will be utilized in evaluation of flood prevention effect by waste management.