The 4th Workshop on GHG Inventories in Asia (WGIA4) 14-15 February 2007, Jakarta, Indonesia

Methane Emissions from Rice Cultivation:

Methodology of the 2006 IPCC Guidelines and Emission Factors in Japanese Inventory Estimation

Kazuyuki Yagi

National Institute for Agro-Environmental Sciences, Tsukuba

Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (1996)

Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2001)

http://www.ipcc.ch/

Revised 2006 IPCC Guidelines

Volume 1: Cross-Cutting Issues and Reporting Tables
Volume 2: Energy
Volume 3: Industrial Processes and Product Use
Volume 4: Agriculture, Forestry and Other Land Use (AFOLU)
Volume 5: Waste

Volume 4, Chapter 5.5 (p. 5-44 to -53) Methane Emissions from Rice Cultivation

Has just published in the web-site: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm

2006 IPCC Guidelines Methodology for CH₄ Emissions from Rice Cultivation

Basic Equations

Emissions (Gg/yr) = Σ_{ijk} (EF _{ijk} • t _{ijk} • A _{ijk} • 10 ⁻⁶)	Eq. (1)
EFi = EFc • SFw • SFp • SFo • SFs,r	Eq. (2)

Here: $EF_{ijk} = a \text{ daily emission factor for i, j, and k conditions, kg CH₄ ha⁻¹ day⁻¹$ t_{ijk} = cultivation period of rice for i, j, and k conditions, day $<math>A_{ijk} = \text{annual harvested area of rice for i, j, and k conditions, ha yr⁻¹}$ EFc = baseline emission factor, kg CH₄ ha⁻¹ day⁻¹SFw = scaling factor for water regime during the cultivation periodSFp = scaling factor for water regime in the pre-seasonSFo = scaling factor for organic amendment appliedSFs,r = scaling factor for soil type, rice cultivar, etc., if available

2006 IPCC Guidelines Methodology for CH₄ Emissions from Rice Cultivation

CH₄ & N₂O Source Database for Rice Fields

2006 IPCC Guidelines Methodology for CH₄ Emissions from Rice Cultivation Scaling Factors for Water Regime during the Cultivation Period (SFw)

Water Regime		Aggregated case		Disaggregated case	
		Scaling Factor (SF _w)	Error Range	Scaling Factor (SF _w)	Error Range
Upland		0	-	0	-
Irrigated	Continuously flooded	0.78	0.62-0.98	1	0.79-1.26
	Intermittently flooded – single aeration			0.60	0.46-0.80
	Intermittently flooded – multiple aeration			0.52	0.41-0.66
Rainfed and deep water	Regular rainfed	0.27		0.28	0.21 - 0.37
	Drought prone		0.21-0.34	0.25	0.18-0.36
	Deep water			0.31	ND

$\begin{array}{c} 2006 \ IPCC \ Guidelines \\ Methodology \ for \ CH_4 \ Emissions \ from \ Rice \ Cultivation \\ Scaling \ Factors \ for \ Water \ Regime \ in \ the \ Pre-season \\ (SFp \) \end{array}$

Water regime prior to rice cultivation		Aggregated case		Disaggregated case	
		Scaling factor (SF _p)	Error range	Scaling factor (SF _p)	Error range
Non flooded pre- season <180 d	Start cultivation			1	0.88-1.14
Non flooded pre- season >180 d	Start cultivation	1.22	1.07-1.40	0.68	0.58-0.80
Flooded pre-season (>30 d)	Start cultivation			1.90	1.65 - 2.18

2006 IPCC Guidelines

Methodology for CH₄ Emissions from Rice Cultivation Scaling Factors for Organic Amendment applied (SFo)

2006 IPCC Guidelines

Methodology for CH₄ Emissions from Rice Cultivation

Major Revisions

- •Baseline emission factor (EFc) has revised to the daily rate, on the basis of statistical analysis of monitoring data
- •New scaling factor for water regime in the preseason (SFp) has incorporated
- •Other scaling factors have revised on the basis of statistical analysis of monitoring data

2006 IPCC Guidelines

Methodology for CH₄ Emissions from Rice Cultivation

Implementation

- •Reliable and universal emission and scaling factors, on the basis of statistical analysis of monitoring data, have provided.
- •As a results, priority for developing country-specific factors became low.
- •More importance to collect reliable activity data in each country for developing better emission inventory

National Inventory for Japan Anthropogenic Sources for CH₄ and N₂O

Inventory in 2005 (Colored parts indicate agricultural sources)

National Inventory for Japan CH₄ Emissions from Rice Cultivation Methodology

- •Tier 2 methodology
- •Country-specific emission factors for 5 soil types, which are based on seasonal field monitoring at 35 sites over the country during 1992-94
- •Country-specific scaling factors for 3 organic amendment
- •Water management was assumed to be homogeneous intermittent-irrigation for 98% of the rice fields

National Inventory for Japan CH₄ Emissions from Rice Cultivation Emission Factors

Type of soil	No. of data	Straw amendment	Various compost amendment	No- amendment	Proportion of area
		[gCH ₄ /m²/year]		%	
Andosol	2	8.50	7.59	6.07	11.9
Yellow soil	4	21.4	14.6	11.7	9.4
Lowland soil	21	19.1	15.3	12.2	41.5
Gley soil	6	17.8	13.8	11.0	30.8
Peat soil	2	26.8	20.5	16.4	6.4

- Based on field monitoring campaign during 1992-1994 at 35 sites over Japan
- Measured by conventional water management with mid-season drainage followed by intermittent flooding

National Inventory for Japan CH₄ Emissions from Rice Cultivation

Calculation for Organic Amendment Applied

 CH_4 emission from the plot with rice straw (g m⁻²)

National Inventory for Japan CH₄ Emissions from Rice Cultivation Water Management Categorization

•Water management was assumed to be homogeneous intermittent-irrigation for 98% of the rice fields

A scaling factor of 1.77 is applied for continuous flooding fields which accounted for 2% of the area
No consideration for water regime in the pre-season

National Inventory for Japan CH₄ Emissions from Rice Cultivation

Trend of CH₄ Emission

Estimation of GHG Emissions by a Process-Based Model

Direct N₂O Emissions from Chemical Fertilizer and Organic Matter Application

Emission Factors for N₂O from Rice

Direct N₂O: Mineral fertilizer/Animal manure

Paddy rice: 0.31 % (from global data analysis) Tea: 2.9 % (from national data analysis) Other crops: 0.62 % (from national data analysis)

Direct N₂O: Crop residues/Legumes IPCC default values

Direct N₂O: Organic soils IPCC default values

Indirect N₂O

Atmospheric deposition (IPCC default values) Leaching and run-off: 1.24 % (from global data analysis)

MAGES-Workshop International Workshop on Monsoon Asia Agricultural Greenhouse Gas Emission Study December 13-14, 2006 Tsukuba, Japan

An International Research Project MAGES

Monsoon Asia Agricultural Greenhouse Gas Emission Studies

Targets

- More accurate regional estimation of Agricultural GHG emissions
- Provide feasible mitigation options and their potentials
- Assess the influences of changing GHG emissions due to changes of management on regional land ecosystems and the atmosphere

Plans in 2007

- MAGES web-site will be open soon.
- MAGES Research Plan will be completed by summer.
- Selected papers in 2006 Workshop will be published as a special section of Soil Sci. Plant Nutr.
- Next Workshop will be held in late 2007 or 2008.

