AGRICULTURE WG REPORT

Report presented during the 4th WGIA, 15 February 2007, Jakarta, Indonesia

Agriculture WG

- Chair Dr. Batimaa Punsalmaa (Mongolia)
- Reporter Dr. Damasa Macandog (Philippines)
- Members:
 - Mr. Dominique Revet (UNFCCC)
 - Dr. Osamu Enishi (Japan)
 - Dr. Kazuyuki Yagi (Japan)
 - Dr. Nguyen Khac Tich (Vietnam)
 - Mr. Shuhaimen Ismail (Malaysia)
 - Dr. Mohamad Z. Abdul Ghani (Malaysia)
 - Mr. Muslihudin (Indonesia)
 - Mr. Chan Thou Chea (Cambodia)

CH₄ emissions from rice ecosystems

Methane emissions from rice fields: Controlling factors:

- Soil properties
- Temperature
- Cultural practices (water regime/drainage, fertilizer, seeding/transplanting, straw/residue management)
- Rice variety

The Interregional Research Programme on Methane Emissions from Rice Fields

- International Rice Research Institute, Fraunhofer Institute for Atmospheric Environmental Research, Agricultural Research Institutes of China, India, Indonesia, Philippines and Thailand
- Funded by United Nations Development Program, Global Environmental Facility (UNDP/GEF GLO/91/G31)

• 1993-1999

Rice production and methane emissions

Management practices can be modified to reduce emissions without affecting yield

- Intermittent drainage in irrigated systems reduces emissions and also saves water
- Improved crop residue management can reduce emissions
- Direct seeding results in less labor and water input and reduce methane emissions
- Plants grown under good nutrition exhibit reduced methane emissions

Approach

Closed chamber method

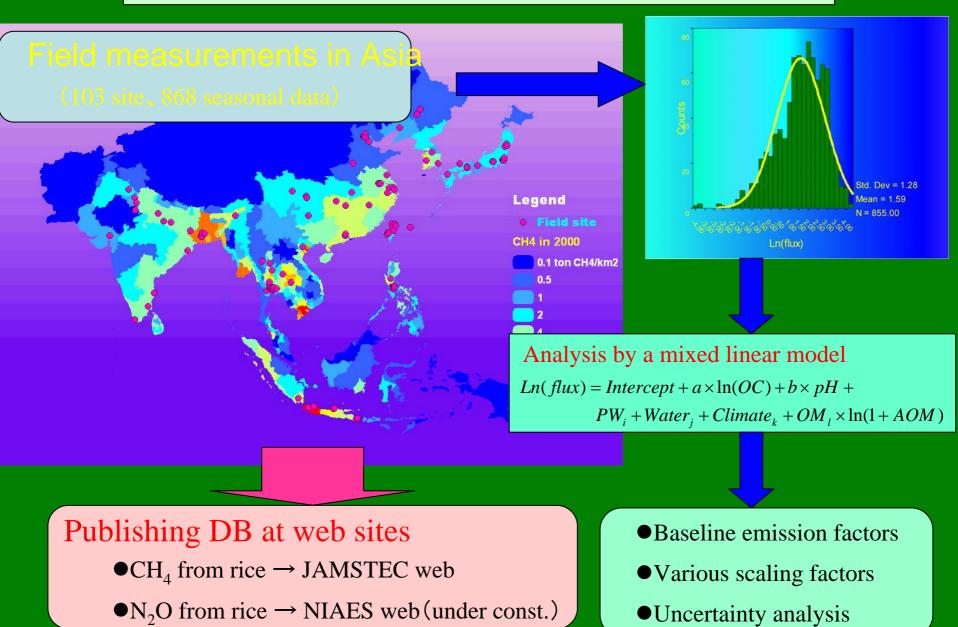
Countries with data from this approach:

IRRI project – Philippines, Indonesia, Thailand, China, India

Japan

Countries without data: Malaysia, Cambodia, Vietnam

Rice Ecosystem Activity Data Status


Activity Data	Cam	India	Indon	Japa n	Mala y	Mongol	Phil	Viet
Water regime								
a. Aggregated								
b. Disaggregat ed								
Organic Amendment								
a. Aggregated								
b. Disaggregat ed								
c. No available data								

COUNTRY SPECIFIC CH₄ EF FROM RICE ECOSYSTEMS

- With countryspecific EF:
- Japan
- Philippines

- Without countryspecific EF:
- Indonesia
- Malaysia
- Cambodia
- Vietnam

CH₄ & N₂O Source Database for Rice Fields

National Inventory for Japan CH₄ Emissions from Rice Cultivation Emission Factors

Type of soil	No. of data	Straw amendment	Various compost amendment	No- amendment	Proportion of area	
			%			
Andosol	2	8.50	7.59	6.07	11.9	
Yellow soil	4	21.4	14.6	11.7	9.4	
Lowland soil	21	19.1	15.3	12.2	41.5	
Gley soil	6	17.8	13.8	11.0	30.8	
Peat soil	2	26.8	20.5	16.4	6.4	

- Based on field monitoring campaign during 1992-1994 at 35 sites over Japan
- Measured by conventional water management with mid-season drainage followed by intermittent flooding

Methane emission factors from rice fields in the Philippines.

Ecosystem		ean emissio ²/day) from		Emission Factor (kg/ha/day)		% Decrease from	
	Los Baños	Maligaya	Mean	Derived	IPCC default (T=27 ° C	IPCC	
Irrigated	233.1	225.5	229.3	2.3	5.9	61	
Rainfed	40.3		40.3	0.4	3.54	89	

2006 IPCC Guidelines Methodology for CH₄ Emissions from Rice Cultivation

Baseline Emission Factor (EFc)

TABLE 5 DEFAULT CH4 BASELINE EMISSION FACTOR ASSUMING NO CULTIVATION, AND CONTINUOUSLY FLOODED DURING RE	FLOODIN		
	Em	ission factor	Error range
CH ₄ emission (kg CH ₄ ha ⁻¹ d ⁻¹)	1.30		0.80-2.20
Source: Yan et al., 2005			
 A baseline emission factor for: no flooded fields for less than 180 day prior to rice cultivation Continuously flooded during the rice cultivation period without organic amendments 	/S	2000 G $= 200 kg$ $• Withouther the second secon$	e 1996 Guidelines & PG ha ⁻¹ season ⁻¹ ut statistical analysis lless of the length of ivation period

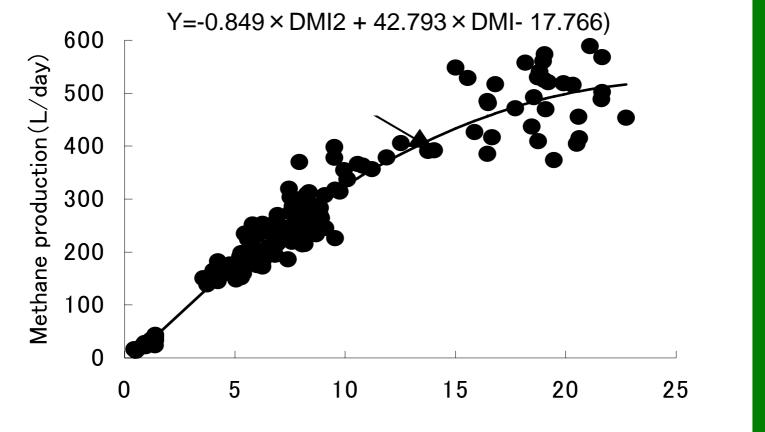
CH₄ Emission from Enteric Fermentation

- Activity Data on Number of heads of different ruminants
- available for all countries
- National Statistics data
- Bureau of Animal Industry

Method for Estimation Current Methane Emission

Dividing animals into animal group

Collecting dry matter intake (DMI) of each animal group


Collecting population data

Estimate methane emission by Shibata's equation (Methane production(L/day) = $-0.849 \times DMI^2 + 42.793 \times DMI - 17.766$)

Multiplying the population by estimate methane emission for each animal group

Summing emissions across animal group

Prediction of methane emission from enteric fermentation in Japan

Dry matter intake(kg)

A trial of simple measurement technique of quantity of methane emission

Sulfur hexafluoride tracer technique(SF6) Open circuit respiration chamber

In vitro gas production technique

Rusitec(Semicontinuous system similar to rumen)

Steps for Improvements of Activity Data in Agriculture:

- Statistical Yearbooks
- Agricultural Statistics
- Seek help for data gathering from National Ministries (Agriculture, Environment) and regional offices
- Experts' opinion
- Documentation/Archiving (sources, comments)
- Sampling to obtain data

Steps for Improvements of EF

- Develop a technology needed to estimate CH_4 emission accurately from ruminants
- For countries without country-specific EF, use EF values from other countries with similar climatic conditions and cultural practices
- Consult the EFDB
- Modeling, equations (Shibata's eqn)

Future directions

- Organic C in soil
- N₂O emissions from N inputs (inorganic fertilizer, manure, crop residues)
- CH₄ and N₂O emissions from residue burning
- Feed type and feed composition vs CH₄ emissions from ruminants
- Proper archiving of AD and EF (sources, notes, comments)
- Listing of AD, EF, data gaps, institutionalization of data gathering and compilation of AD and EF for national GHG inventories

THANK YOU!

