

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE NATIONAL GREENHOUSE GAS INVENTORIES PROGRAMME

How to estimate emissions from Wastewater Handling

Kiyoto Tanabe Technical Support Unit, IPCC NGGIP

The 4th Workshop on GHG Inventories in Asia (WGIA) 14-15 February 2007, Jakarta, Indonesia

Reporting Categories

<u> 1996 Guidelines + GPG2000</u>

6B: Wastewater Handling

- 6B1: Industrial Wastewater
- 6B2: Domestic and Commercial Wastewater 6B3: Other

Essentially the same!

2006 Guidelines

- 4D: Wastewater Treatment and Discharge
- 4D1: Domestic Wastewater Treatment and Discharge
 - 4D2: Industrial Wastewater Treatment and
 - Discharge
 - 4E: Other

NTERGOVERNMENTAL PANEL ON CLIMATE CHANGE VATIONAL GREENHOUSE GAS INVENTORIES PROGRAMME

Methods for emission estimation

- Under the UNCCC, Non-Annex I Parties should use 1996GLs, and are encouraged to apply GPG2000.
- However, for this category, the 2006GLs can be used to estimate emissions, because the methods are essentially the same as, and better than, the 1996GLs.
 - Reasonably simplified (e.g., distinction between wastewater and sludge has been removed [following GPG2000])
 - ✓ Wider coverage (e.g., CH₄ from uncollected wastewater)
 - \checkmark Up-to-date information and data available
- > Therefore, let's see 2006GLs methods here.
- > Attention!!
 - ✓ Spreadsheets in the UNFCCC Inventory Software are not entirely compatible with 2006GLs calc procedure.
 - ✓ Worksheets in Vol.5 can be used instead.

Gases to be estimated and reported \checkmark CH₄ and N₂O \checkmark CO₂ emissions are not considered because these are of biogenic origin Sources by type Domestic (including commercial) wastewater / Industrial wastewater Collected / Uncollected Treated / Untreated

Wastewater treatment system and discharge pathways

Wastewater and sludge can produce CH₄ if it degrades anaerobically.

> CH₄ production depends primarily on

✓ Quantity of degradable organic material

- BOD (BOD₅) for domestic wastewater
- COD (by dichromate method) for industrial wastewater
- ✓ Temperature
 - Below 15 °C, significant production is unlikely
- ✓ Type of treatment system
 - Degree to which the system is anaerobic MCF

Three tiers according to data availability

- ✓ Tier 1: Default values for EFs and activity parameters
- Tier 2: Same method as Tier 1 with country-specific EFs and activity parameters
- Tier 3: Advanced country-specific method (based on plant-specific data from large wastewater treatment facilities)
- Determine the tier to use following the decision trees

If this is a key category, Tier 2 or 3 should be used.

CH₄ from domestic wastewater treatment and discharge (Tiers 1 & 2)

Step 1: Estimate total organically degradable carbon in wastewater (TOW) [kg BOD/yr]

 $TOW = P \times BOD \times 0.001 \times I \times 365$

P = country population [person]
BOD = per capita BOD [g/person/day]
I = correction factor for additional industrial BOD discharged into sewers [fraction]

> Step 2: Obtain emission factors (EF_i) [kg CH₄/kg BOD]

✓ Select the pathways and systems

✓ Obtain EFs for each pathway or system (j)

 $EF_j = B_o \times MCF_j$

 $B_o = maximum CH_4$ producing capacity [kg CH₄/kg BOD] MCF_j = methane correction factor [fraction]

CH₄ from domestic wastewater treatment and discharge (Tiers 1 & 2)

Step 3: Calculate emissions from TOW and EF_i, and adjust for possible sludge removal and/or CH₄ recovery CH₄ emissions [kg CH₄/yr]

 $= \left[\sum_{i,j} \left(\underbrace{U_i \times T_{i,j}}_{i,j} \times EF_j \right) \right] \times (TOW - S) - R$

 $\begin{array}{l} U_i = \mbox{fraction of population in income group (i) [fraction]} \\ T_{i,j} = \mbox{degree of utilisation of treatment/discharge pathway} \\ \mbox{or system (j) for each income group (i) [fraction]} \\ \\ \sum\limits_i (U_i \times T_{i,j}) = \mbox{fraction of WW treated in the system (j)} \\ \\ \mbox{(Ensure } \sum\limits_{i=1}^{r} (U_i \times T_{i,j}) = 1 \ \mbox{!!} \end{array}$

S = organic component removed as sludge [kg BOD/yr] R = amount of CH_4 recovered [kg CH_4 /yr]

CH₄ from domestic wastewater treatment and discharge (Tiers 1 & 2)

CH₄ from industrial wastewater treatment and discharge (Tiers 1 & 2)

- Step 1: Estimate total organically degradable carbon in wastewater for industrial sector (i) (TOW_i) [kg COD/yr]
 - ✓ First, identify major industrial sectors with large potentials for CH₄ emissions. (e.g., pulp & paper, food & drink, etc.)

 $TOW_i = P_i \times W_i \times COD_i$

- P_i = total industrial product for industrial sector (i) [t/yr]
 W_i = wastewater generated in industrial sector (i) [m³/t-product]
 COD_i = chemical oxygen demand (industrial organic component in wastewater generated in industrial sector (i) [kg COD/m³]
 > Step 2: Obtain emission factors (EF_i) [kg CH₄/kg COD]
 - $EF_i = B_o \times MCF_i$ (similarly to dom. WW)

NTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

VATIONAL GREENHOUSE GAS INVENTORIES PROGRAMME

Step 3: Calculate emissions from TOW_i and EF_i, and adjust for possible sludge removal and/or CH₄ recovery

CH₄ emissions [kg CH₄/yr]

- $= \sum_{i} [(TOW_i S_i) \times EF_i R_i]$
- S_i = organic component removed as sludge in industrial sector (i) [kg COD/yr]

 R_i = amount of CH_4 recovered in industrial sector (i) [kg CH_4 /yr]

> Default values for S_i and $R_i = 0$

CH₄ emissions from sludge sent to landfills, incinerated or used in agriculture should not be included in this category.

- The amount of organic component removed as sludge ("S" in the equations) should be equal to the sum of:
 - ✓ amount of sludge disposed at SWDS
 - ✓ amount of sludge applied to agricultural land
 - ✓ amount of sludge incinerated or used elsewhere

Wastewater and sludge that is applied on agricultural land should be considered in Agriculture (or AFOLU) Sector.

Estimation of N₂O emissions

- $> N_2O$ emissions can occur as:
 - $\checkmark\,$ direct emissions from treatment plants; or
 - ✓ indirect emissions from wastewater after disposal of effluent into waterways, lakes or the sea
- Typically, direct emissions are much smaller than indirect emissions.
 - Except for countries that predominantly have advanced centralized wastewater treatment plants with nitrification and denitrification steps
- > Industrial sources are believed to be insignificant.
- Only one tier for indirect emissions from domestic wastewater:
 - $\checkmark\,$ No higher tiers, no decision tree
 - Industrial wastewater co-discharged with domestic wastewater into the sewer system is included

Step 1: Estimate total nitrogen in the effluent (N_{EFFLUENT}) [kg N/yr]

 $N_{EFFLUENT} = (P \times Protein \times F_{NPR} \\ \times F_{NON-CON} \times F_{IND-COM}) - N_{SLUDGE}$

P = human population [person] Protein = annual per capita protein consumption [kg/person/yr] $F_{NPR} = fraction of nitrogen in protein [kg N/kg protein]$ (default = 0.16)

F_{NON-CON} = fraction for non-consumed protein added to the wastewater [fraction]

F_{IND-COM} = fraction for industrial and commercial co-discharged protein into the sewer system [fraction]

N_{SLUDGE} = nitrogen removed with sludge [kg N/yr]

N₂O from domestic wastewater treatment effluent (indirect emissions)

Step 2: Calculate emissions by multiplying an emission factor to N_{EFFLUENT}

 N_2O emissions [kg N_2O/yr] = $N_{EFFLUENT} \times EF_{EFFLUENT} \times 44/28$

EF_{EFFLUENT} = emission factor for N2O emissions from wastewater effluent discharged into aquatic environments [kg N₂O-N/kg N]
(Default value is 0.005 (0.0005-0.25) [kg N₂O-N/kg N].
= Consistent with the EF for indirect N₂O in AFOLU.)

44/28 = factor for conversion of kg N₂O-N into kg N₂O

Default values for EFs and other various parameters can be found in Chapter 6 of Vol.5 of 2006GLs.

Worksheets – See Annex 1 of Vol.5.

> Any questions?

