Evaluation Procedure for Carbon Stock Changes in Japanese Forest Sectors

Masahiro Amano Waseda University

Forest land remaining forest land

• 1995 Report adopted <u>IPCC Default Method</u> $\triangle CFFLB = (\triangle CFFG - \triangle CFFL)$

 Δ CFFLB = annual change in carbon stocks in living biomass Δ CFFG = annual increase in carbon stocks due to biomass growth Δ CFFL = annual decrease in carbon stocks due to biomass loss,

Forest land remaining forest land

• 2005 Report adopted Stock Change Method $\Delta CFFLB = (C t2 - C t1) / (t2 - t1)$

 Δ CFFLB = annual change in carbon stocks in living biomass

- C t2 = total carbon in biomass calculated at time t2
- C t1 = total carbon in biomass calculated at time t1

Japanese Inventory System focuses on Kyoto Protocol

Monitoring ARD

Preparation of orthophotos around 1990 to define forest area in 1989/12/31

Location of an ARD test area by RS

Images used in ARD monitoring test case

pace image)

Identification of FM lands

- Narrow and broad interpretation of the definition of FM
 - (LULUCF GPG)... A party could interpret the definition of forest management in terms of <u>specified forest</u> <u>management practices</u>, such as fire suppression, harvesting or thinning, undertaken since 1990.
 Alternatively, a country could interpret the definition of forest management in terms of a broad classification of land subject to a system of forest management practices, without the requirement that a specified forest management practice has occurred on each land.

Forest Inventory Data 1

- Forest registers
 - Attribute information
 - Area, Species, Age, DBH, Volume, Ownership
 - Number of Compartment and Subcompartment of all private and national forests
 - Compartments: 370,000 records
 - Sub-compartments: 31,000,000 records
 - Renewal every five years
 - Linkage to boundaries in forest maps

Forest Registers Database

Forest Inventory Data 2

- Forest maps
 - 1/5000 scale maps
 - Boundaries of forest compartments and subcompartments
 - Around 40% of the boundaries were digitized for GIS so far

Geographic Units

Administrative needs

Forest Inventory Data 3 Forest Resource Monitoring System

By M. Matsumoto

Definition of Forest

Minimum Crown cover 10-30%

a minimum height 2-5m

Carbon pool in forests defined By Marrakech Accords

Collection of data (above ground biomass)

Tree species	Previous	Research	Project by Forest Agency			Total
	Lite rature	Project				
		1	2	3	4	
Cryptomeria japonica	216	11	66	25	17	335
Chamaecyparis obtusa	82	8		16	39	145
Pinus densiflora	135	0		4	3	142
Larix kaempferi	49	9		8	7	73
Abies sachalinensis	30	2		2	5	39
Picea jezoensis	0	3			3	6
Picea glehnii	1	4		2	5	12
Other conifers	1	1		1	3	6
Broadleaf	171				15	186
Total	685	38	66	58	97	944

①Study on Transparent and Verifiable Method of Evaluating Carbon Sinks(FY2001-2003) ②Project on evaluate to effect of thinning for forest sink(FY1999-2000)

(2) Project on evaluate to effect of thinning for forest sink(FY1999-2000)

③Project on development for measurement system of forest sink(FY2001-2002)

(4)Project on organization development for measurement and Use of forest sink(FY2003-2006)

➢ We are measuring 73 plots in which 28 plots are measuring additionally below ground biomass in 2004.

> We will repeat same plan to measure in 2005 and 2006.

Forestry & Forest Products Research Institute

Biomass Expansion Factor (BEF₂) of Sugi Cedar

BEF₂ of Boreal Conifer

Forestry & Forest Products Research Institute

Biomass Expansion Factors of Some Typical Species in Japan

				by added data of		Tentative value by added				
Stand	Tree Species	Previous Literature		research project FY2001-		data of forest agency				
Age						2003		project	t FY1999	9-2003
Age		Numbe	Mean	Confi.	Numbe	Mean	Confi.	Numbe	Mean	Confi.
		r of		RSE	r of		RSE	r of		RSE
	Cryptomeria	111	1,61	±0_07	-		—	142	1.58	± 0.06
	japonica			4_3%						3.6%
	Abies	14	1.85	±0_17	-		-	15	1.85	± 0.16
≦20	sachalinensis			9_0%						8.4%
	All of broadleaf	47	1.39	±0_07	-		-	48	1.40	± 0.07
				4_9%						4.9%
	Cryptomeria	105	1.25	±0_02	116	1.24	± 0.02	193	1_23	± 0.01
	japonica			1_6%			1.6%			1.2%
	Abies	16	1.36	±0_05	18	1.35	± 0.05	24	1.35	± 0.05
≧21	sachalinensis			3_9%			3.7%			3.7%
	All of broadleaf	124	1.28	±0_02	-		_	138	1_27	± 0.02
				1_8%						1.6%

By T. lehara

Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio,R)

Forestry & Forest Products Research Institute 🚰

Belowground to Aboveground Biomass Ratio of Some Typical Species in Japan

Stand	Tree Species	Previous Literature				
Age		Numbe	Mean	Confi.		
		r of		RSE		
	Cryptomeria	37	0_23	±0.01		
	japonica			5.9%		
	Abies	5	0_26	± 0.05		
≦20	sachalinensis			21.1%		
	All of broadleaf	4	0_22	± 0.09		
				38,7%		
	Cryptomeria	35	0_28	±0,01		
	japonica			4.6%		
	Abies	2	0.15	± 0.10		
≧21	sachalinensis			66.2%		
	All of broadleaf	8	0_24	± 0.07		
				28.0%		

Forest GHG Accounting System

By M. Matsumoto