Rapid and Accate Measurements of Methane Emissions from Rice Paddies under the APN CAPaBLE GHG Project

Amnat Chidthaisong

Joint Graduate School of Energy & Environment, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

Thailand Greenhouse Gas Inventory 1994

GHGs	Emission (Gg)	CO ₂ -equivalent (Gg)	%
CO_2	202,458	202,458	71
CH_4	3,171	66,598	23
N ₂ O	56	17,317	6

Current Inventory

- **→** Emission Factors calculated from;
 - -Derived using the average of the measurements conducted in four typical rice growing areas in Thailand (1.56 kg-CH $_4$ per ha per d) which were under continuous flooding (no fertilizer) in the wet season during 1992 to 1994
 - -The average methane emission rate was converted according to different water regimes and organic matter amendment using IPCC correction factors.

Table 3.1 Measured Methane Emissions in kg CH₄/ha/day from Various Rice Cultivation Areas, with and without Soil Amendments

Province	Soil series	NF	CF	CF+OM	Average
Pathum Thani	Rangsit	0.45	0.73	1.11	0.763
Ratchaburi	Nakornpathom	1.13	2.32	5.93	3.127
Surin	Roi-et	3.77	5.41	6.33	5.170
Chiangmai	Hang Dong	0.89	1.76	1.31	1.320
Av	Average		2.56	3.67	2.595

Notes: NF = no fertilizer application

CF = with chemical fertilizer amendment

CF + OM = with both chemical and organic fertilizer amendment

Source: Jermsawatdipong, et al. 1994.

Table 3.2 Methane Emission Factors for Different Water Ecosystem and Organic Amendment

Category		Sub-category		Correction factors for organic amendment	Emission factors kg CH₄/ha/day
Major rice					
Upland	Rainfed	-	0	1	0
	Irrigated	Continuously flooded + OM	1	2	3.120
	Irrigated	Continuously flooded	1	1	1.560
Low land	Rainfed	Flood prone	0.8	2	1.248
		Flood prone + OM	0.8	1	2.496
		Drought prone	0.4	1	0.624
		Drought prone + OM	0.4	2	1.248
	Deep water	Water depth > 100 cm	0.6	1	0.936
Second rice	Irrigated	Continuously flooded + OM	1	2	3.120

				Lo	ocal EF I	PCC E	
Category	/ Sub-category		Seasonal flux (g CH4/sq m)	Cultivation area (ha)	CH₄ emission (Gg)		
Major rice							
Upland	Rainfed	-	0.00	34,048	0.00	0.00	
Low land	Irrigated	Continuously flooded + OM	44.04	1,121,492	493.90	420	
		Continuously flooded	18.72	1,121,492	209.94	210	
	Rainfed	Flood prone + OM	14.98	1,100,926	164.87	165	
		Flood prone	35.23	1,100,926	387.88	330	
		Drought prone + OM	17.62	2,184,333	384.79	327	
		Drought prone	7.49	2,184,333	163.56	164	
	Deep water	Water depth > 100 cm	15.31	39,478	6.04	8	
		Total		8,887,026	1,811.00	Ü	
Second rice	Irrigated	Continuously flooded	44.04	680,123	200.53	1623	
		Total Emissions		9,567,149	2,110.53	225	

Methane Emission from Rice Paddy in Thailand

- Link to main economic activity (rice production) and majority of population well-being.
- Room to improve emission inventory;
 - → area covering
 - → temporal variations
 - → cultivation practices: organic/inorganic fertilization, water management, seasons.

Method for Emission Measurements → Static Chamber methods

- Time consuming
- Limited replication
- Expensive
- Accuracy concerns
- Not applicable in the remote area

Training: Determination of CH₄ Concentration using semiconductor sensor at NIES

- To learn how to use the CH₄ sensor unit for determining CH₄ concentration.
- 1-30 March 2004, 15-31 August 2004

Sensing Mechanism

Conductiv R+O₂² → RO+2e ons are released; proportional to the amount of reduced gas

Field Deployment

- The sensor unit:
- mobile, no need for external power supply
- > quick measurement, reliable, accurate
- > many measurement replications
- > cheaper cost per measurement
- > relatively easy to operate

What's next?

- → Use for CH₄ emission measurement in Thai paddies
- → Comparing with the conventional chamber-GC method
- **→** Apply in various rice cultivation schemes
- **→** Emission factor database for CH₄ emission in Thailand
- → Application in other countries

Thanks

- →NIES GHG Inventory Team--Japan
- → Joint Graduate School of Energy & Environment (JGSEE), King Mongkut's Univ. of Technology Thonburi---Thailand
- → APN—Financial supports

