## The 2<sup>nd</sup> Workshop on GHG Inventories in Asia Region

7 -8 February 2005 Shanghai, China

#### Cambodia's LULUCF inventory improvement under the APN CAPaBLE GHG Inventory Project

Presented by: Sum Thy Chief of Climate Change Office, Ministry of Environment, Cambodia cceap@online.com.kh

# **Outline of Presentation**

- Why improve Cambodia's LULUCF inventory
- Scope of study
- Location of Study
- Methodology
- Progress to date
- Next activities
- Conclusion/recommendation

### 1. Why improve Cambodia's LULUCF inventory (1)

• Emission from LULUCF contributed about 97 % of the Cambodia's 1994 National GHG Inventory

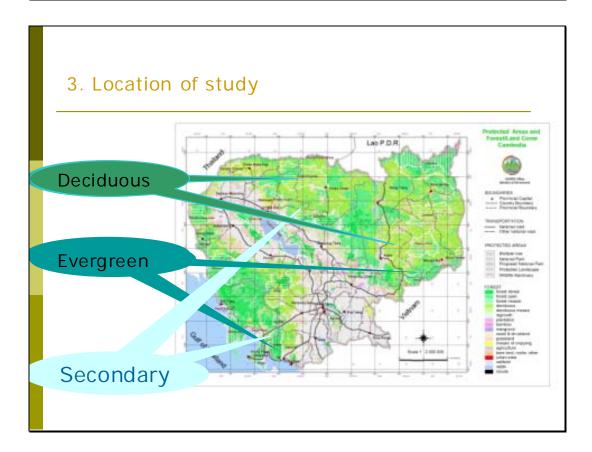
• There was no research on emission factor (aboveground biomass, biomass growth rate), therefore the IPCC emission factors were used for the preparation of Cambodia's 1994 GHG inventory.

• In 2001, a field study on aboveground biomass and biomass increment was conducted under CCEAP-phase 2. However the data from the field survey may not reflect to the overall condition of Cambodian forests, due to:

- (1) limitation of time, financial support, and expertise
- (2) limitation of number of location and sample selected

| PCC Source Category                 |                                               | B<br>Direct<br>GHGs | C<br>1994 Estimate | ABS       | E<br>Level<br>Assessment | F<br>% Contribution<br>to Level | Cumulativ |
|-------------------------------------|-----------------------------------------------|---------------------|--------------------|-----------|--------------------------|---------------------------------|-----------|
|                                     | Forest - Deciduous                            | CO2                 | -28,597.80         |           | 0.203                    | 20.26%                          | 20.1      |
|                                     | Forest - Evergreen                            | CO <sub>2</sub>     | -22,148.50         |           | 0.157                    | 15.69%                          | 35.       |
|                                     | Biomass-Decay- Forest - Secondary/Regrowth    | CO <sub>2</sub>     | 14,124.00          | 14,124.00 | 0.100                    | 10.01%                          | 45.       |
|                                     | Forest - Mixed&Coniferous                     | CO <sub>2</sub>     | -11,757.90         | 11,757.90 | 0.083                    | 8.33%                           | 54.       |
| B Forest & Grassland Conversion     | On-Site-Burning- Forest - Secondary/Regrowth  | CO <sub>2</sub>     | 10,169.28          | 10,169.28 | 0.072                    | 7.20%                           | 61.       |
| A Changes in Forest / Woody Biomass | Roundwood Harvested                           | CO <sub>2</sub>     | 8,271.94           | 8,271.94  | 0.059                    | 5.86%                           | 67.       |
| B Forest & Grassland Conversion     | Biomass-Decay- Forest - Deciduous             | $CO_2$              | 4,154.33           | 4,154.33  | 0.029                    | 2.94%                           | 70.       |
| A Changes in Forest / Woody Biomass | Shrubland                                     | $CO_2$              | -3,974.67          | 3,974.67  | 0.028                    | 2.82%                           | 73.       |
| B Forest & Grassland Conversion     | On-Site-Burning- Forest - Deciduous           | $CO_2$              | 2,991.12           | 2,991.12  | 0.021                    | 2.12%                           | 75.       |
| A Enteric Fermentation              | Non-dairy Cattle                              | $CH_4$              | 2,587.20           | 2,587.20  | 0.018                    | 1.83%                           | 77.       |
| B Forest & Grassland Conversion     | Biomass-Decay- Forest - Evergreen             | $CO_2$              | 2,586.38           | 2,586.38  | 0.018                    | 1.83%                           | 78        |
| B Forest & Grassland Conversion     | Off-Site-Burning- Forest - Secondary/Regrowth | CO <sub>2</sub>     | 2,542.32           | 2,542.32  | 0.018                    | 1.80%                           | 80        |
| A Changes in Forest / Woody Biomass | Forest - Secondary/Regrowth                   | CO <sub>2</sub>     | -2,179.10          | 2,179.10  | 0.015                    | 1.54%                           | 82        |
| C Rice Cultivation                  | Rainfed                                       | $CH_4$              | 2,177.07           | 2,177.07  | 0.015                    | 1.54%                           | 83.       |
| A Changes in Forest / Woody Biomass | Forest - Inundated                            | $CO_2$              | -1,890.31          | 1,890.31  | 0.013                    | 1.34%                           | 85.       |
| B Forest & Grassland Conversion     | On-Site-Burning- Forest - Evergreen           | CO <sub>2</sub>     | 1,862.19           | 1,862.19  | 0.013                    | 1.32%                           | 86        |
| B Forest & Grassland Conversion     | On-Site-Burning                               | $CH_4$              | 1,570.08           | 1,570.08  | 0.011                    | 1.11%                           | 87        |
| B Forest & Grassland Conversion     | Biomass-Decay- Shrubland                      | $CO_2$              | 1,440.40           | 1,440.40  | 0.010                    | 1.02%                           | 88        |
| B Forest & Grassland Conversion     | Biomass-Decay- Forest - Inundated             | $CO_2$              | 1,204.50           | 1,204.50  | 0.009                    | 0.85%                           | 89        |
| B Manure Management                 | Solid System and Drylot                       | $N_2O$              | 1,196.81           | 1,196.81  | 0.008                    | 0.85%                           | 90        |
| B Forest & Grassland Conversion     | On-Site-Burning- Shrubland                    | $CO_2$              | 1,037.09           | 1,037.09  | 0.007                    | 0.73%                           | 91        |
| C Rice Cultivation                  | Irrigated                                     | $CH_4$              | 981.29             | 981.29    | 0.007                    | 0.70%                           | 91        |
| D Agricultural Soils                | 1 Direct Emissions                            | N <sub>2</sub> O    | 971.12             | 971.12    | 0.007                    | 0.69%                           | 92        |
| A Changes in Forest / Woody Biomass | Plantation                                    | CO <sub>2</sub>     | -918.50            | 918.50    | 0.007                    | 0.65%                           | 93        |
| B Forest & Grassland Conversion     | On-Site-Burning- Forest - Inundated           | CO <sub>2</sub>     | 867.24             | 867.24    | 0.006                    | 0.61%                           | 93        |
| D Agricultural Soils                | 3 Indirect Emissions                          | N <sub>2</sub> O    | 848.05             | 848.05    | 0.006                    | 0.60%                           | 94        |
| A Enteric Fermentation              | Buffalo                                       | $CH_4$              | 808.50             | 808.50    | 0.006                    | 0.57%                           | 94        |
| B Forest & Grassland Conversion     | Off-Site-Burning- Forest - Deciduous          | CO,                 | 747.78             | 747.78    | 0.005                    | 0.53%                           | 95        |

## 1. Why improve Cambodia's LULUCF inventory (1)

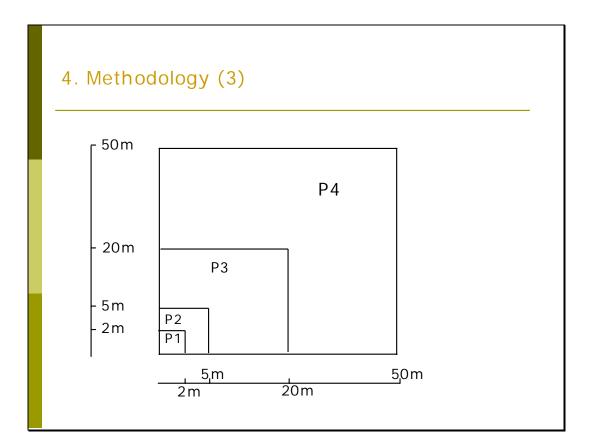

#### 2. Scope of study

• The field survey will focus on the main forest types that play important role as the key source/sink in the estimation of emission and removal in LULUCF.

- Selected Forest type to be conducted field survey:
  (a) deciduous,
  - (b) evergreen, and

  - (c) secondary forests.
- Data to be measured: Annual Growth Rate and aboveground biomass of the metioned forest type.

• Proposed schedule for field survey: Starting from February 2005.




### 4. Methodology (1)

- FAO's methodology will be adapted, but more precise as CAPaBLE Project measures biomass in necromass, understorey, and litters.
- Two permanent plots of 2,500 m<sup>2</sup> (50 m x 50 m) for each forest type will be established in two different provinces. All trees species with a diameter of 30 cm or greater are numbered and measured.
- Furthermore, establish three sub-plots from the same corner peg for the collection of tree information of different tree diameter classes as follows:

#### 4. Methodology (2)

- (a) Sub-plot 1: a  $2x^2 = 4m^2$  plot in which count is made for all seedlings less than 5 cm in diameter.
- (b) Sub-plot 2: a 5x5=25m<sup>2</sup> plot in which all sapling by species or species class, over 5 cm and under 7.5 cm in diameter, are numbered and measured.
- (c) Sub-plot 3: 20x20 = 400m<sup>2</sup> plot in which all trees with a diameter of 7.5 cm or greater and less than 29.9 cm (>7.5-29.9cm) are numbered and measured for diameter with species recorded.



#### 5. Progress to date

• Visited Greenhouse Gas Inventory Office of Japan National Institute for Environmental Studies (NIES) in March 2004 to identify the potential improvement of emission factors reflecting country and regional conditions including actual measurements.

 Assessed key source category for Cambodian GHG Inventory

• Several discussion have been made through email to find out appropriate methodology for improving the GHG inventory in LULUCF.

• Three days field training has been organized for project team.

• Selected methodology, forest types and locations for field measurement.

#### 6. Next Activities

- Field measurement for selected forest types and locations
- Data compiling and report writing.

### 7. Conclusion/recommendation

- APN CAPaBLE GHG Inventory Project will help Cambodia to improve its national GHG inventory by focusing on the key factors.
- Aboveground biomass and biomass growth rate of deciduous, evergreen, and secondary forests will be developed.
- Project team will gain experiences and skills in field measurement.
- **Some difficulties:** limited budget, expertise, equipements.

#### • Our recommendation:

- (1) More research on Biomass After Conversion of each forest type would be done.
- (2) Expend collaboration with other programs/projects
- (3) APN's fund for next year activities is needed for second measurement.