The 16th Workshop on GHG Inventory in Asia (WGIA16) New Delhi, India July 10 – 12, 2018

Emissions Projections of GHGs and Air Pollutants in the Transport Sector and Importance of Improving National GHG Inventories

Tatsuya HANAOKA

Integrated Environment and Economy Section Center for Social and Environmental Systems Research National Institute for Environmental Studies

IPCC AR5 WG3 (2014) Chapter 6: Assessing Transformation Pathways

- Without more mitigation, global mean surface temperature might increase by 3.7 4.8°C by 2100.
- To stay below 2°C, the range of GHG emissions are roughly between 30-50 Gt CO2eq in 2030.
- To stay below 2°C, 41–72% reductions by 2050 compared to the 2010 level are required.

UNEP (2015) The Emission Gap Report

Emissions Pathways are in line with the 2°C target under the Paris Agreement?

- Without enhanced ambition, the likely global average temperature increase will be in the range of
 <3.0 3.5°C by the end of the century
- INDCs emission levels are 4 6 GtCO₂eq lower than the current policy trajectory in 2030
- However, emission gaps between INDCs and 2° C pathways are **12 Gt 14 Gt** CO₂eq in 2030.

Source) UNEP (2015), FigureES1, Figure ES2 http://uneplive.unep.org/media/docs/theme/13/EGR_2015_ES_English_Embargoed.pdf

Synergies and Tradeoffs of Transport Measures for Reducing Multi-gas

Considering effects and combinations of mitigation measures in transport

Transport Sector in the Integrated Assessment Model

Emission Factors by energy, by mode, by region, need to be collected and set by reviewing several guidelines, various peer-reviewed journal papers, reports, etc.

IPCC Inventory Guideline 2006 in the Road Transport Sector

Tier1Emission =
$$\sum_{a} Fuel_a \times EF_a$$
How to project future activity ?Tier2Emission = $\sum_{a} \sum_{b} \sum_{c} Fuel_{a,b,c} \times EF_{a,b,c}$ Fuel= fuel consumed or sold [TJ]EF= emission factor [kg-gas/TJ]a= fuel type such as petrol, diesel, natural gas, LPGb= vehicle typec= emission control technology such as uncontrolled, catalytic converterTier3Emission = $\sum_{a} \sum_{b} \sum_{c} \sum_{d} Distance_{a,b,c,d}$ $EF_{a,b,c,d}$ $+ \sum_{a} \sum_{b} \sum_{c} \sum_{d} C_{a,b,c,d}$ Distance = distance traveled [vehicle km]EF= emission factor [kg-gas/km] C = emission factor [kg-gas/km]C= emission factor [kg-gas/km]C= emission factor [kg-gas/km] C $=$ emission factor [kg-gas/km]

d = operating conditions (urban or rural road type, climate factor etc)

How to Estimate Emissions Projections in the Road Transport - Overview of Analysis Flow -

How to Estimate Road Transport Volume - Preparation for Historical Time-series Data -

- In order to project future GHG and air pollutants emissions, we firstly need to project future transport volumes.
- In order to get ready for projecting future transport volumes, we need to prepare historical time-series data and estimate transport volume in the following equation

- $TPV_{m,r,t}$: transport passenger volume of each mode [person km]
- $VHN_{m,r,t}$:number of vehicles in-use of each mode [vehicle]
- *OWN*_{*m,r,t*} : ownership rate, i.e. number of vehicles per 1000 people in each mode [vehicle/1000 person]
- *POP*_{*r*,*t*} : population [1000 person]
- $ADT_{m,r,t}$: utilization factor, i.e. average annual distance travelled in each mode [km/vehicle]
- $OCC_{m,r,t}$: occupancy rate in each mode [person/vehicle]

Note1) If there is lack of data availability of *ADT* and *OCC* by region and by year, *ADT* and *OCC* can be set at the constant value in each mode across all regions and years.

How to Project Road Transport Volume - Concept of Methods -

There are several methods to project future transport volumes (TPV). Method 1: estimating TPV projections by projecting VHN Method 2: estimating TPV projections by projecting OWN Method 3: projecting TPV directly.

Depending on data availability and research questions, we decide suitable methods.

¹-- This value is "distance" which is also required for the national inventory

Method	Correlation function	Merit	Demerit
Method 1	correlation among number of vehicles and socio-economic indicators	 Intuitive from statistics Suitable for near- term/mid-term future 	 Require detailed data sets of stock and flow of vehicles. Better to avoid simple regression analysis
Method 2	correlation among ownership rate and socio- economic indicators	Applicable to variety of scenarios	You may face with low value of coefficient determination depending on mode
Method 3	correlation among transport volume and socio-economic indicators.	Suitable for mid- term/long-term future	You also need to check other countries statistical data, to set scenario assumptions 8

How to Project Road Transport Volume - Method 1: correlation b/w no. of vehicles and socioeconomics -

Regression model is suitable only for short- & mid-term analysis, because if POP & GDP keep increasing, number of vehicles will also keep increasing without any threshold.
 It is recommended to use population balance model rather than simple regression model.

Methodology	Overview	Required variable for future scenario
Multi regression model	Using historical correlation between objective variable and basic socio-economic variable.	GDP, POP, per capita GDP
Lifetime model	Using historical correlation between number of sales by device and lifetime duration by device.	Sales numbers by device. lifetime duration by device.
Population balance model	Using historical correlation between number of stocks by device and lifetime duration by device.	Stock (in-use) numbers by device. Lifetime duration by device.

Overview of how to estimate end-of-life products (=dispose of used products) by using Population Balance Model

Source)

Oguchi M., Terazono A., Hanaoka T. (2017) Estimating the potential amount of fluorocarbons in end-of-life products generated in Asian developing countries, 2017 Joint Conference ISIE and ISSST.

How to Project Road Transport Volume - Method 2: correlation b/w ownership rate and socioeconomics -

- Depending on data availability and also data fittings to a specific function by checking determinate coefficient, we will change suitable functions, as follows.
- When using Gompertz function or Logistic function, we need to set a suitable saturation value, by reviewing/collecting/analyzing developed countries statistics too.

- b_r : regression coefficient that influence the displacement along the *X*-axis (i.e. graph to left/right)
- c_r : regression coefficient that influence the shape of S-curve, the growth rate along the Y-axis
- lpha : regression coefficient that influence the slope
- \mathcal{E} : regression coefficient influence the intercept

Note1) explanatory variables can be not only GDP per capita but also GDP or POP etc. Note2) regression can be either single or multiple, single-log or both-log, etc.

How to Project Road Transport Volume

- Method 3: correlation b/w transport volume and socioeconomics -

We can discuss transport volume directly and apply to variety of future scenarios easily.
 When using Gompertz function or Logistic function, we need to set a suitable saturation value, by reviewing/collecting/analyzing developed countries statistics too.

- pka_r : saturation value
- *pkb*_r : regression coefficient that influence the displacement along the *X*-axis
- *pkc*_r : regression coefficient that influence the shape of S-curve, the growth rate along the Y-*axis*
- lpha : regression coefficient that influence the slope
 - : regression coefficient influence the intercept

Note1) explanatory variables can be not only GDP per capita but also GDP or POP etc. Note2) regression can be either single or multiple, single-log or both-log, etc.

Е

How to Estimate Road Transport Volume - Overview: Method 3 -

How to Estimate Mitigation Option: AIM/Enduse model

Preparation for Historical Data on Socio-economics and Road Transport - Example Data Characteristics in 2010 in India -

Source)

Mittal, S., Hanaoka, T., Shukula, P.R., Masui, T. (2015) Air Pollution co-benefit of low carbon policies in road transport: a sub-national assessment for India, Environ. Res. Lett. 10

Results of Passenger Road Transport Volume - Results of Future Projections in India -

Development speeds and shares are different depending on state-wise characteristics

Source)

Mittal, S., Hanaoka, T., Shukula, P.R., Masui, T. (2015) Air Pollution co-benefit of low carbon policies in road transport: a sub-national assessment for India, Environ. Res. Lett. 10

Emissions Projections: BaU vs Low Carbon Scenario - Cobeneifts of reducing PM_{2.5} and NOx-

Important to take into account cobenefits reducitons of air pollutants (NOx, PM_{2.5} etc) Short-Lived Climate Pollutant (BC) due to low-carbon actions in the road transport.

Source)

Mittal, S., Hanaoka, T., Shukula, P.R., Masui, T. (2015) Air Pollution co-benefit of low carbon policies in road transport: a sub-national assessment for India, Environ. Res. Lett. 10

16

Bridging the GAP - Statistics, Inventories, Projections, & Actions -

It is essential to enforce MRV(Measurable, Reportable, Verifiable) for analyzing national future GHG emissions and mitigation actions.

Necessary to enforce measurable statistical systems

Necessary to enforce reportable & verifiable inventory network

various data and skills for analysis

Necessary to collect Necessary to enforce communication on policies and actions

ご清聴ありがとうございました Thank you for your attention

Asia-Pacific Integrated Model http://www-iam.nies.go.jp/aim/index.html

