Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 7396

James F. Smothers, Malavi T. Madireddi, Fred D. Warner, and C. David Allis; Programmed DNA Degradation and Nuleolar Biogenesis Occur in Distinct Organelles during Macronuclear Development in Tetrahymena. J.Eukaryot.Microbiol. 44(2):79-88, 1997

Reprint

In File

Notes

Programmed DNA rearrangements, including DNA degradation, characterize the development of the soma from the germline in a number of developmental systems. Pdd1p (programmed DNA degradation 1 protein), a development-specific polypeptide in Tetrahymena, is enriched in developing macronuclei (anlagen) and has been implicated in DNA elimination and nucleolar biogenesis. Here, immunocytochemistry and fluorescent in situ hybridization (FISH) were employed to follow Pdd1p and two nucleolar markers (Nopp52 and rDNA) during macronuclear development. Both Pdd1p and Nopp52 localize to subnuclear structures, each of which resemble nucleoli. However, while true nucleoli form and persist during development, Pdd1p-positive structures are only present for a brief period of macronuclear differentiation. Accordingly, two distinct organelles can be recognized in anlagen: (1) Pdd1p-positive structures, which lack Nopp52 and rDNA, and (2) developing nucleoli which contain rDNA and Nopp52 but lack Pdd1p. Taken together with recent data corroborating Pdd1p's role in DNA elimination, we favor the hypothesis that Pdd1p structures are unique, short-lived organelles, likely to function in programmed DNA degradation and not in nucleolar biogenesis.