Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 4393

J. William Straus, Grace Migaki, and Maria T. Finch; An Assessment of Proteolytic Enzymes in Tetrahymena thermophila. J.Protozool. 39(6):655-662, 1992

Reprint

In File

Notes

Cellular extracts of Tetrahymena thermophila were found to contain substantial levels of proteolytic activity. Protein digestion occurred over broad ranges of pH, ionic strength, and temperature and was stimulated by treatment with thiol reductants, EDTA and sodium dodecyl sulfate. Incubation at temperatures >/_60 degrees C or with high concentrations of chaotropic reagents such as 10M urea or 6M guanidine-HCl caused an apparent irreversible loss of activity. Activity was also strongly diminished by increasing concentrations of divalent cations. Several peptide aldehydes, p-hydroxymercuribenzoate, and alkylating reagents such as iodoacetate, N-tosyl-L-lysine chloromethyl ketone, N-tosyl-L-phenylalanine chloromethyl ketone, N-methylmaleimide, and trans-epoxysuccinyl-L-leucylamido-(4-guanidino)-butane were potent inhibitors of proteolytic activity. Aprotinin diminished activity by approximately 40% while benzamidine, 3,4-dichloroisocoumarin, and trypsin inhibitors from soy bean, lima bena, and chicken egg caused relatively modest inhibition of proteolytic activity. Phenylmethanesulfonyl fluoride had no apparent effect. Electrophoretic separation of proteins on SDS-polyacrylamide gels copolymerized with gelatin substrate revealed that at least eight active proteolytic enzymes were present in cell extracts ranging in apparent molecular weight from 45,000 to 110,000. Five of these apparent proteases were detected in 70% ammonium sulfate precipitates. Gelatinase activity was not detectable when extracts were pretreated with iodoacetate or E-64, indicating that all of the enzymes observed in activity gels were sensitive to thiol alkylation. Cellular extracts of T. thermophila appeared to contain multiple forms of proteolytic enzymes which were stimulated by thiol reductants and inhibited by thiol modifying reagents. Accordingly, the proteolytic enzymes present in cell extracts appear to be predominantly cysteine proteinases.