Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 3638

Maryanne Koll and Joseph A. Erwin; The Effect of Dietary Sterol on the Activity of Fatty Acid Desaturases Isolated from Tetrahymena setosa. J.Protozool. 37(3):229-237, 1990

Reprint

In File

Notes

Tetrahymena setosa has a nutritional requirement for micro amounts of sterol, a requirement which is also satisfied by relatively large amounts of either intact phospholipids or a mixture of unsaturated fatty acids normally found in these ciliates. Three microsomal fatty acyl-CoA desaturases have been isolated from T. setosa and partially characterized. These enzymes which can account for the formation of the majority of the ciliate's unsaturated fatty acids, include: a triangle 9, a triangle 12 and a triangle 6 desaturase which catalyze the transformation of stearoyl-CoA to oleic acid, of oleoyl-CoA to linoleic acid and of linoleoyl-CoA to gamma-linolenic acid, respectively. The stearoyl CoA desaturase required NAD (or NADP), ATP and free CoA; the triangle 6 and triangle 12 desaturases required NADP, but not ATP or CoA. Cellular levels of the three desaturases were highest in mid-logarithmic phase cells and lowest in stationary phase cells. In order to determine if there was a relationship between the sterol requirement and the ability of the organism to desaturate, T. setosa was grown in a synthetic medium supplemented with either cholesterol or a phospholipid which permits growth in the absence of cholesterol, or with both phospholipid and cholesterol. Cells grown with phospholipid alone had only half as much stearoyl-CoA and oleoyl-CoA desaturase activity as cells of identical culture age grown either on cholesterol alone or on cholesterol plus phospholipid.