Emissions of CO and NOx from Biomass Burning in Siberia: Current Uncertainties & Environmental Implications

> Hiroshi Tanimoto Global Atmospheric Chemistry Section, National Institute for Environmental Studies, Japan



Religion, Art, or Biomass Burning?

# Daimonji-Yaki in Kyoto, on 16<sup>th</sup> August (大文字の送り火)



# Q: Does Biomass Burning make Ozone? A: It depends. Contradicting picture.

## Q: Why? How? and ...

In collaboration with:

CO: Keiichi Sato, Tim Butler, Mark G. Lawrence, Jenny A. Fisher, Monika Kopacz, Robert M. Yantosca, Yugo Kanaya, Shungo Kato, Tomoaki Okuda, Shigeru Tanaka, Jiye Zeng, Hideki Nara NO2: K. Folkert Boersma, Ronald van der A, Andreas Richter, et al.







# AIRS Can Capture Long-range Transport of CO

#### **AIRS: Atmospheric Infrared Sounder**



Greater advantage of AIRS is its increased horizontal spatial coverage (70% of the globe each day, versus 3 days by MOPITT)

- Onboard NASA's Aqua satellite
- Launched in May 2002
- Retrieval at 4.7 mm
- Spatial resolution of 45 x 1650 km
- Sensitive to CO in the mid-trop.
- Bias of +15-20 ppbv over oceans relative to MOPITT on EOS/Terra satellite (Warner et al. 2007)
- Events can be seen (Yurganov et al. 2008; Zhang et al. 2008)

Greater spatial coverage allows us to track CO plumes transported from the emission sources to distances of several thousands km on each day

## How can AIRS see CO over Siberia?

Tanimoto et al., Tellus-B, 2009



- AIRS detected CO enhancement over source regions
- AIRS tracked biomass burning CO plumes over Eurasia on a daily basis

### AIRS vs. CTM : Sep 10-13, 2003 (BB > FF)

AIRS





CTM (hybrid-GFEDv2)



- Model is lower and less widespread than AIRS
- GFEDv2 may underestimate CO emissions per area by failing to implement small fires from MODIS
- Peat burning (smoldering)
  - Emissions estimates are very difficult, due to large uncertainties such as the amount of organic matter, depth of organic layers, soil moisture under ground
  - Emission factors may be greatly different from standard numbers

## **AIRS CO over Southeast Asia**



- AIRS captures eastward CO plumes from SE Asia
- GFEDv2 suggests strong CO emissions from Borneo and Sumatra Islands
- High-CO observed is due to BB emissions in SE Asia

# CO-vs-CO<sub>2</sub> Correlation in BB Plumes



Indonesian peatland: 143, 194-279

- Observed CO/CO<sub>2</sub> ratio (171 ppb/ppm) is higher than in GFEDv2 (~110 ppb/ppm)
- Uncertainty in CO emissions by GFEDv2 in Southeast Asia associated with emission factors of peatland fires



Nara et al., Environ. Chem., 2011

## **Background & Motivation**

- Emissions, transport, impacts of CO are well-studied
- CO is simple: atmospheric mixing ratios ≈ emissions
- Those of  $O_3$  is less known, it is much more complicated
- Important roles of boreal forest fires in day-to-day variability, interannual variability, and long-term trend of trop. O<sub>3</sub>
- O<sub>3</sub> production depends on ...
  - fire emissions
  - photochemical reactions
  - meteorology
  - aerosol effects
- Still lots of discussions on magnitude of O<sub>3</sub> prod/loss
- O<sub>3</sub> enhancements are subtle, "several (0-5) ppbv"
- NOx is a key species, but not extensively examined, because of limited measurements nearby fires

## Does Biomass Burning make tropospheric ozone?

#### Review

#### Ozone production from wildfires: A critical review

#### Atmos. Environ., 2012

#### Daniel A. Jaffe<sup>a,b,\*</sup>, Nicole L. Wigder<sup>a</sup>

#### $\Delta O_3 / \Delta CO$

| Plume age category | Study                   | Boreal and temperate regions | Approximate<br>plume age   | Range of $\Delta O_3/\Delta CO$ (ppbv/ppbv)<br>(number of measurements) | Mean ΔO <sub>3</sub> /ΔCO<br>(ppbv/ppbv) |
|--------------------|-------------------------|------------------------------|----------------------------|-------------------------------------------------------------------------|------------------------------------------|
| ≤1–2 days          | Alvarado et al., 2010   | Canada                       | 4–10 h                     | -0.032-0.052 ( $n = 16$ )                                               | $0.005 \pm 0.019$                        |
|                    | Alvarado et al., 2010   | Canada                       | 14 h-2 days                | -0.94-0.34 ( $n = 15$ )                                                 | $-0.06 \pm 0.28$                         |
|                    | Goode et al., 2000      | Alaska                       | 2 h                        | 0.064 - 0.089 (n = 3)                                                   | $0.079 \pm 0.024$                        |
|                    | Singh et al., 2010      | Siberia/North America        | <1 day                     | range not specified ( $n = 18$ )                                        | $\textbf{0.03} \pm \textbf{0.04}$        |
|                    | DeBell et al., 2004     | Canada                       | 1-3 days                   | 0.014 - 0.062 (n = 3)                                                   | 0.035                                    |
| average            |                         |                              | -                          |                                                                         | 0.018                                    |
| 2—5 days           | Mauzerall et al., 1996  | Canada                       | not specified <sup>a</sup> | 0.00–0.66 ( <i>n</i> = 9)                                               | 0.13                                     |
|                    | Paris et al., 2009      | Siberia                      | 2 days                     | 0.14(n = 1)                                                             | $0.14\pm0.50$                            |
|                    | Singh et al., 2010      | Siberia/North America        | 1-5 days                   | range not specified ( $n = 20$ )                                        | $0.11 \pm 0.09^{b}$                      |
|                    | Tanimoto et al., 2008   | Siberia                      | $\leq$ 5 days              | -0.07 - 0.42 ( $n = 8$ )                                                | 0.17                                     |
|                    | Wofsy et al., 1992      | Alaska/Canada                | not specified <sup>a</sup> | 0.18(n = 1)                                                             | 0.18                                     |
| average            |                         |                              |                            |                                                                         | 0.15                                     |
| ≥5 days            | Alvarado et al., 2010   | Canada                       | 2-11 days                  | -0.20-0.00 ( <i>n</i> = 3)                                              | $-0.07\pm0.12$                           |
|                    | Bertschi et al., 2004   | Siberia                      | 6-10 days                  | 0.22 - 0.36 (n = 5)                                                     | 0.27                                     |
|                    | Bertschi & Jaffe, 2005  | Siberia                      | 7-10 days                  | 0.15 - 0.84 (n = 5)                                                     | 0.44                                     |
|                    | Honrath et al., 2004    | Siberia                      | 13-15 days                 | 0.45 - 0.93 (n = 4)                                                     | 0.59                                     |
|                    | Paris et al., 2009      | Siberia                      | 13 days                    | -0.04(n = 1)                                                            | -0.04                                    |
|                    | Pfister et al., 2006    | Alaska/Canada                | not specified <sup>a</sup> | range/number not specified                                              | 0.25                                     |
|                    | Real et al., 2007       | Alaska                       | 6-9 days                   | -0.0088 - 0.078 (n = 2)                                                 | 0.035                                    |
|                    | Val Martin et al., 2006 | northern North America       | 6-15 days                  | -0.42-0.89 ( $n = 9$ )                                                  | 0.27                                     |
| average            |                         |                              | -                          |                                                                         | 0.22                                     |

• Some people say "YES" or "A LOT", some say "NO" or "NOT MUCH"

### Ozone production in Siberian BB plumes



## Ozone production in Siberian BB plumes



- Observations of  $\Delta O3/\Delta CO$  in fire plumes range from -0.1 to 0.9
- Ozone production takes place in SOME wildfire plumes
- Wildfires can contribute to exceedances of the ozone air quality standard

#### Trop. NO<sub>2</sub> column over Siberia viewed from space



• Enhancement of NO<sub>2</sub> is negligible in "low-fire-year"

# Trop. NO<sub>2</sub> columns in BB-years (1998, 2002, 2003)





- Weak but significant enhancement of NO<sub>2</sub> in 1998, 2002, 2003
- Locations of NO<sub>2</sub> enhancements differ depending on year

0 1 2 3 4 6 8 11 15 20

## Anomalies of NO<sub>2</sub> in 1998, 2002, 2003

#### Tanimoto et al., submitted



Locations of NOx enhancement are consistent between satellites and inventory

#### Satellites vs. Model – Anomalies in 1998, 2002, 2003



## Satellites vs. Model – Comparison of regional means



- Satellites can detect NOx emissions from "large" & "medium"-scale fires
- Model agrees well with satellites in a qualitative manner (x4) = overestimates

## Anomalies in ozone by Model, surface level (L=1)

Diff Abs





## Summary

- Biomass burning is a substantial source for many species of atmospheric importance
  - BB-CO is easy to detect but BB-NO<sub>2</sub> is not. "Large-scale" BB-NO<sub>2</sub> emissions are now detectable from space!
  - In principle, NO<sub>2</sub> is easier to identify than CO over sources due to short lifetime
- GFED is one of the state-of-science inventories for BB, but it may still need improvements for boreal fires in Siberia
  - CO tends to be underestimated but NOx overestimated
  - Peat burning and small fires are challenging
- Current chemistry transport model(s) produce too much O3
  - Non-linearity chemistry in sub-grid scale
  - Better representation of chemical processes in fire plumes are important, in addition to reducing uncertainty for emissions
- Multi-species approach is useful to constrain emissions from BB, and to test/improve model transport schemes
  - Anthropogenic/BB, Region, location, amount, etc
  - Synergetic use of satellites whatever satellites, we use!



### Interannual variability of surface ozone – Obs vs. Model

#### Rishiri Island, Japan (45N, 141E)



- Interannual variability = meteorology + emissions + stratospheric
- Model (w/ interannual BB) reproduces O<sub>3</sub> anomalies at Rishiri
- Good: Summer 2002 / Spring 2003
- Bad: Summer 1998 (obs. < model)

## **Questions & Tools**



Tanimoto, Boersma, et al., in preparation, 2012

- Can satellites see NOx (NO<sub>2</sub>) enhancement due to boreal fires?
- Does the GFED-driven model reproduce the NOx enhancement, and predict O<sub>3</sub> enhancement?
- Are satellites, model, and surface data consistent with each other? (top-down vs. bottom-up)

#### GOME

- 1998-2002, 10:30LT, 40x320 km
- SCIAMACHY
  - 2002-2004, 10:00LT, 30x60 km
- KNMI (TEMIS) & Bremen (A. Richter)
  - monthly grid data
  - cloud-free & nearly cloud-free (cloud radiance <50%)</li>

- GEOS-Chem (Harvard Univ.)
  - Version: v8-01-01
  - Met. Field: GEOS4
  - Horizontal Grid: 4x5 deg
  - Vertical Layers: 30 layers
  - Tracers: 43 species
  - Emissions: GFEDv2, monthly
  - Period: Apr Sep, 1998, 1999, 2000, 2001, 2002, 2003, 2004

## Summary & Future work

To be more precise...

- Satellites' overpass time
  - GOME: 0930LT, SCIA: 1000LT, OMI: 1330LT
- Spatial resolution
  - Satellites < Model</p>
- Clouds
  - Model < satellites, sampling issue</li>
- Retrieval w/r/t a priori
  - Stratospheric NO<sub>2</sub> from model
- Vertical sensitivity (Averaging Kernel)
  - AK to model to have the same sensitivity to boundary layer NO<sub>2</sub>
- Diurnal cycles
  - NOx emissions from BB, NO/NO<sub>2</sub> partitioning
  - Treatment of these factors in models

## Vertical NO<sub>2</sub> profiles in Model



- Model predicts large enhancement in boundary layer (0-2 km) in BB years
- Enhancement is x 5-6

### Annual burned area, 1997-2009



- Global Fire Emission Database: GFEDv1, v2, v3, v4, ...
- Burned area is basically derived from MODIS

### Annual carbon emissions, 1997-2009



- Emission is not simply proportional to burned area
- Emission = burned area \* biomass \* combustion completeness \* emission factor, ...

# Summer 1998 – climatology



# Summer 2002 – climatology



# Spring 2003 – climatology



### **Biomass Burning Emissions in Siberia**



#### Satellite instruments providing CO column





validated data product, global coverage every 3 days, used in inversions and comparisons previously

sensitive throughout the column, large errors, relatively unexplored

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Averaging kernel [-]

**s c i a m a c н y** 2.3 μm

CO column averaging kernels

20° SZA

30'

40° 50°

70°

200

400

600

800

1000

Pressure [hPa]



extremely denserelativelycoverage (daily global)unexplored,v5 retrieval not usedso farcollocatedinformation on

. . . .

0.08

#### Available satellite CO (column) data



CO columns expected to be different due to different vertical sensitivity

#### Testing Two Retrievals – KNMI (TEMIS) & Bremen



# Satellites vs. Model – gridded, climatology



- In general, satellites > model over source regions
- Both the satellites and models look reasonable in non-BB years